Действующий

Об утверждаемом перечне видов технологий, признаваемых современными технологиями в целях заключения специальных инвестиционных контрактов (с изменениями на 12 апреля 2024 года)

УТВЕРЖДЕН

распоряжением Правительства

Российской Федерации

от 28 ноября 2020 года № 3143-р

Перечень видов технологий, признаваемых современными технологиями в целях заключения специальных инвестиционных контрактов

(с изменениями на 12 апреля 2024 года)


Наименование современной технологии

Наимено-

вание промыш-

ленной продукции, серийное производство которой должно быть освоено в результате разработки и внедрения или внедрения соответст-

вующего вида современной технологии

Код ОКПД2 промыш-

ленной продукции в соответствии с Обще-

российским класси-

фикатором продукции по видам экономи-

ческой деятельности

Требования к основным техническим характеристикам (свойствам) промышленной продукции и (или) требования к современной технологии, то есть к способу (методам) производства промышленной продукции (для продукции горнодобывающих производств указывается только способ (метод) производства промышленной продукции)

Срок, по исте-

чении которого вклю-

ченная в пере-

чень совре-

менная техно-

логия утра-

чивает актуаль-

ность

Сведения об отнесении (неотне-

сении) современной технологии к приоритетам научно-

технологи-

ческого развития Российской Федерации, установ-

ленным в соответствии с Указом Президента Российской Федерации "О Стратегии научно-

технологи-

ческого развития Российской Федерации"

Сведения об обязательности (необяза-

тельности) включения в специальный инвестиционный контракт обязанности инвестора, предусмот-

ренной статьей 18_2 Федерального закона "О промышленной политике в Российской Федерации"

Сведения об экологичности, о ресурсоэффективности и об энергоэффективности современной технологии, о потенциале развития современной технологии*

Груп-

па, к кото-

рой отно-

сится техно-

логия

________________

* Наименование графы в редакции, введенной в действие распоряжением Правительства Российской Федерации от 9 ноября 2023 года N 3133-р. - См. предыдущую редакцию.

Современные технологии сферы ведения Минпромторга России

 

1.

Технология производства керамогранита

керамогранит

23.31.10.120

технические характеристики: водопоглощение 0,3 процентов; предел прочности при изгибе 40 МПа; морозостойкость - 150 циклов; технология производства: керамогранит, изготавливаемый методом полусухого прессования, (тонкостенные изделия, изготавливаемые методом прессования порошкообразной массы на основе глинистых и (или) других неорганических материалов под высоким давлением)

 

1 января 2040 г.

да

обязательно

керамогранит - это новая востребованная на рынке современная продукция высокого качества с максимально низким уровнем водопоглощения.


Потенциал развития технологии в изменении свойств конечного продукта

2

2.

Технология изготовления фасонного литья стали и чугуна, при помощи одноразовой модельной оснастки в методе формообразования холодно-твердеющих смесей на основе ALPHA-SET процесса

чугун передельный для литейного производства

24.10.11.122

метод производства гарантирует максимальное отсутствие внутренних дефектов в теле отливки как в серийном изготовлении, так и в одноразовом исполнении отливок;


метод универсален и подходит практически для любых сплавов;

 

31 января 2030 г.

да

обязательно

при использовании многоразовой модельной оснастки с методом формообразования холодно-твердеющих смесей появляется возможность сделать производство крупносерийным, а также повысить точность изделий

3

 

 

 

 

при изготовлении отливок методом формообразования холодно-твердеющих смесей на основе ALPHA-SET процесса с применением одноразовой модельной оснастки появляется возможность производить мелкосерийную продукцию, а также значительно сокращается время изготовления продукции и снижается ее себестоимость

 

 

 

 

 

 

2_1.

Технология прямого восстановления МИДРЕКС или эквивалент в шахтной печи для производства горячебрикети-
рованного железа

горячебрике-
тированное железо

24.10.13

качественные показатели продукции:

среднее содержание железа общего проценту;

среднее содержание процента;

средняя степень металлизации 93,5 процента;

среднее содержание углерода 1,5 процента;

плотность 5 г/см;

прочность брикетов (барабанный индекс по выходу класса +25 мм) 79 процентам

1 января 2070 г.

да

обязательно

в технологический процесс возможно внедрение новой уникальной технологии регулируемого углерода, которая интегрируется в существующую технологию производства горячебрикетированного железа. Принцип технологии основан на разделении конвертированного газа с помощью молекулярных мембран на 2 потока с различным химическим составом. Подача одного из потоков с высоким содержанием оксида углерода в транзитную зону шахтной печи позволяет повысить содержание углерода в горячебрикетированном железе без снижения остальных качественных характеристик

2

(Позиция дополнительно включена распоряжением Правительства Российской Федерации от 15 июня 2022 года N 1569-р)

2_2.

Технология
производства
высококачест-
венной стали с низким
углеродным следом для изготовления
литых заготовок,
стальных
профилирован-
ных
горячекатаных
изделий

рельсы;
заготовка;
прокат
горячекатаный
сортовой,
фасонный
и гнутые
профили
повышенной
прочности;
балка;
швеллер;
уголок;
шпунт;
полоса

24.10;
24.10.21;
24.10.23;
24.10.7;
24.10.71;
24.10.73;
24.10.80;
24.31;
24.32;
24.33

технологическое решение включает: современный электросталепла-
вильный цех с годовой производитель-
ностью до 1460000 тонн в год жидкой стали (шихта от 100 процентов лома, до 20 процентов чугуна и до 50 процентов горячебрикетиро-
ванного железа)
для производства углеродистых, легированных, боросодержащих, пружинных и ресульфурирован-
ных марок стали,
а также группы
из трех марок с особыми требованиями
по качеству (шинный корд, подшипниковая, колесная);

1 апреля 2052 г.

да

необязатель-
но, так как в результате внедрения технологии будет создано производство конкуренто-
способной на мировом уровне промышлен-
ной продукции

технология выплавки и вакуумирования стали с дальнейшей прокаткой крупных профилей обеспечит развитие сопутствующих отраслей в Российской Федерации за счет производства продукции с новыми для Российской Федерации уникальными свойствами,
а также за счет применения передовых цифровых решений. Технология будет способствовать развитию экспортных поставок высококачест-
венной специальной продукции с низким углеродным следом

1

установку газоочистки с рукавным фильтром с импульсной очисткой рукавов, общая производитель-
ность которой составляет 2970000 Ем/ч.;
машину непрерывного литья для производства заготовок, блюмов и балочных заготовок 200 х 200 мм,

250 х 320 мм,
300 х 380 мм,
200 х 850 мм,
290/100 х 380 мм,
380/90 х 480 мм,
470/110 х 740 мм,
длиной 5,0-12,0 м;
универсальный прокатный стан
920000 тонн готовой продукции
в год для производства стальных
профилированных горячекатаных
изделий (с термообработкой
и без термообработки) различного
назначения

(Позиция дополнительно включена распоряжением Правительства Российской Федерации от 9 декабря 2022 года N 3847-р)

2_3.

Технология производства высококачественной стали с низким углеродным следом для изготовления полимерного, оцинкованного, холоднокатаного проката, труб и гнутых профилей, труб большого диаметра, горячекатаного и травленого проката

полимерный, оцинкованный, холодно-

катаный прокат;


трубы и гнутые профили;


трубы большого диаметра;


горячекатаный и травленый прокат

24.10;


24.20

технологическое решение включает в себя:


производство железорудных окатышей с содержанием железа более 60 процентов;


использование более 80 процентов окатышей в доменной шихте с сокращением расхода агломерата;


сокращение расхода твердого топлива на доменную плавку;

1 июня 2046 г.

нет

необязательно, так как объем прав в данном случае на технологию таков, что не несет никаких ограничений на возможность совершенствования такой технологии.


Ограничений на создание результатов интеллектуальной деятельности и получение патентов (свидетельств) нет

действующие металлургические производства оказывают влияние на окружающую среду и качество атмосферного воздуха.


Снижение нагрузки на атмосферный воздух и соблюдение нормативов качества атмосферного воздуха являются одними из ключевых причин внедрения данной технологии.

2

увеличение производительности доменных печей, обусловленное повышением массовой доли железа в металлошихте;


снижение удельных выбросов  на производство стали на 10 процентов от фактического уровня;


увеличение расхода природного газа и снижение расхода твердого топлива на доменную плавку

В рамках внедрения технологии возможно снижение совокупного объема выбросов загрязняющих веществ до 35 процентов, а также снижение выбросов опасных (приоритетных) загрязняющих веществ до 22,9 процента.

Реализация технологии позволит:


обеспечить строгие стандарты действующего российского законодательства;


обеспечить соответствие наилучшим доступным технологиям и мировым практикам.     

Переход на новую технологическую цепочку позволит:


снизить потребление агломерата за счет увеличения доли окатышей в доменной шихте;


уменьшить негативное влияние на окружающую среду;

при увеличении расхода природного газа снизить расход твердого топлива на доменную плавку.


Реализация мероприятия позволит достичь снижения удельных выбросов на производство стали на 10 процентов

(Позиция дополнительно включена распоряжением Правительства Российской Федерации от 9 ноября 2023 года N 3133-р)

3.

Технология производства стали, круглой заготовки и высококачественных слябов

сталь

24.10.2

характеристики прямоугольной заготовки:


геометрические параметры - слябы толщиной от 250 до 400 мм и шириной от 1800 до 2500 мм;


качественные параметры - дефекты макроструктуры слябов не более 1 балла по ГОСТ Р 58228-2018 "Заготовка стальная непрерывнолитая. Методы контроля и оценки макроструктуры";

 

1 июля 2045 г.

да

необязательно.


Установление обязательства, не требуется так как в целях совершенст-

вования технологии может не быть необходимости в создании результата интелектуальнной деятельности на основе данной технологии

технология подразумевает дальнейшее развитие (использование дополнительных технических решений, применение которых позволит изготавливать тонкие слябы с минимальным содержанием цветных примесей)

2

 

 

 

 

низкая концентрация газов и вредных примесей (азот менее 0,005 процента, водород менее 0,0002 процента, общий кислород менее 0,0020 процента, сера менее 0,0010 процента) (для варианта использования шихтовки плавки с применением прямовосстановленного железа возможно достижение низкой концентрация цветных примесей (Cr+Sn+Sb+Cu+Ni+Mo+As) менее 0,05 процента);

 

 

 

 

 

 

 

 

 

 

высокое качество поверхности и геометрии слябовой заготовки (допуски по толщине +/- 3 мм;

 

 

 

 

 

 

 

 

 

 

допуски по ширине +/- 0,5 мм;

 

 

 

 

 

 

 

 

 

 

отклонение от плановой длины +/- 50 мм);

 

 

 

 

 

 

 

 

 

 

характеристики круглой заготовки:

 

 

 

 

 

 

 

 

 

 

геометрические параметры - круглая заготовка диаметром от 170 до 455 мм качественные параметры - низкая концентрация газов и вредных примесей:

 

 

 

 

 

 

 

 

 

 

сталь для колес (азот менее 0,005 процента, водород менее 0,0001 процента, общий кислород менее 0,0020 процента) (для варианта использования шихтовки плавки с применением прямовосстановленного железа возможно снижение концентрации цветных примесей (Cr+Sn+Sb+Cu+Ni+Mo+As) менее 0,05 процента);

 

 

 

 

 

 

 

 

 

 

сталь для бесшовных труб (азот менее 0,005 процента, водород менее 0,0002 процента, общий кислород менее 0,0025 процента);

 

 

 

 

 

 

 

 

 

 

высокое качество поверхности и геометрии круглой заготовки (диаметр +/- 1 процент; овальность менее 1 процент; кривизна заготовки - не более 2,5 мм/м; отклонение от плановой длины +/- 30 мм)

 

 

 

 

 

 

3.1.

Технология по инновационному производству высококачественной стали, горячекатаного и холоднокатаного плоского проката из легированных нержавеющих сталей и сплавов коррозионно-стойких, жаростойких и жаропрочных с использованием современных цифровых решений для удовлетворения потребностей отраслей промышленности Российской Федерации (включая атомное и

формы первичные из нержавеющей стали прочие;
формы первичные из прочих легированных сталей прочие;
прокат листовой горячекатаный из нелегированных сталей, без дополнительной обработки, шириной не менее 600 мм;
прокат листовой горячекатаный из прочих
легированных

24.10.22.119;
24.10.23.119;
24.10.31.000;
24.10.33.000;
24.10.34.000;
24.10.35.000;
24.10.42.000;
24.32.10.000

жидкая сталь, предварительно обработанная на агрегатах внепечной обработки, поставляемая с температурой 1560-1680°С в сталеразливочном ковше:
марки стали:
легированные нержавеющие стали коррозионностойкие, жаростойкие, жаропрочные структурных классов мартенситного, мартенсито-
ферритного, ферритного, аустенито-мартенситного, аустенито-ферритного, аустенитного;
качественные параметры:
низкое (до 0,3 процента) и ультранизкое (до 0,005 процента) содержание

11 июня 2071 г

.

да

неприменимо

обеспечит развитие сопутствующих отраслей в Российской Федерации за счет производства продукции с новыми для Российской Федерации уникальными свойствами, развитие спроса на данный вид продукции, ранее не производимой в Российской Федерации, развитие экспортных поставок новой для Российской Федерации продукции. В ходе реализации технологии планируется непрерывное усовершенствование свойств продукции и разработка новых видов продукции с новыми

1

энергетическое машиностроение, судостроение, авиастроение, космическую, химическую промышленность, строительство, металлургию и иные отрасли), а также для развития экспортного потенциала Российской Федерации

сталей, без дополнительной обработки, шириной не менее 600 мм;
прокат листовой горячекатаный из нержавеющих сталей, без дополнительной обработки, шириной не менее 600 мм;
прокат листовой горячекатаный из нержавеющих сталей, без дополнительной обработки, шириной менее 600 мм;
прокат листовой холоднокатаный из нержавеющих сталей, без дополнительной обработки, шириной не менее 600 мм;
прокат листовой холоднокатаный

углерода, низкая концентрация газов и вредных примесей. Прокат
листовой горячекатаный:
марки стали:
углеродистые и легированные конструкционные марки стали качественные и обыкновенного качества;
размеры:
ширина до 1700 мм, толщина 1,8-13 мм, длина (листов) до 12 м, масса (рулонов) до 30 тонн. Прокат листовой горячекатаный, марки стали:
легированные нержавеющие стали коррозионностойкие, жаростойкие, жаропрочные структурных классов, мартенситного, мартенсито-ферритного, ферритного, аустенито-мартенситного, аустенито-ферритного, аустенитного;
размеры:
ширина до 1600 мм, толщина 2-13 мм длина (листов) до 12 м, масса (рулонов) до 30 тонн. Прокат листовой холоднокатаный, марки стали:

свойствами и

стальной, неплакированный, шириной менее 600 мм

легированные нержавеющие стали коррозионностойкие, жаростойкие, жаропрочные структурных классов, мартенситного, мартенсито-ферритного, ферритного, аустенито-мартенситного, аустенито-ферритного, аустенитного;
размеры:
ширина до 1600 мм, толщина 0,3-5 мм, длина (листов) до 12 м, масса (рулонов) до 30 тонн;
Все указанные виды продукции гарантированно удовлетворяют актуальные технические требования действующих отечественных (ГОСТ) и зарубежных (ASTM, ASME, EN, DIN, BS и других) стандартов с учетом практикуемых дополнительных требований потребителей. Соответствие заявленным техническим требованиям гарантируется предусмотренным набором технологического оборудования

(Позиция дополнительно включена распоряжением Правительства Российской Федерации от 2 декабря 2021 года N 3420-р)

4.

Технология изготовления ультратонкого (с толщиной от 0,80 мм) горячекатаного рулонного проката из углеродистых, микро-, низко- и высоко-

легированных, а также высокопрочных сталей по

прокат листовой горячекатаный стальной, без дополнительной обработки

24.10.3

технические характеристики:


толщина проката 0,8-12,7 мм;


высокая точность изготовления (поле допусков по толщине от 7 до 11 процентов от EN 10051 или от 18 до 40 процентов - EN 10131);

 

5 июня 2030 г.

да

обязательно

по мере освоения производства ультратонкой полосы и накопления достаточного опыта, возможен выпуск проката из мягких сталей меньших толщин, например до 0,60 мм, а также производство тонкого и широкого высокопрочного проката с экономным легированием

2

 

совмещенной технологии разливки тонких слябов и

 

 

удельный вес рулона 7-21 кг/мм;

 

 

 

 

для автомобильной промышленности взамен холоднокатаного, в котором

 

 

прямой бесконечной горячей прокатки, исключающей промежуточные

 

 

высокая плоскостность (не более 13 I-Units на 95 процентов длины полосы);

 

 

 

 

комплекс свойств либо недостижим, либо композиция химического состава приводит к

 

 

операции складирования, охлаждения и повторного газового нагрева/подогрева заготовок

 

 

отсутствие дефектов поверхности;


нижение выбросов монооксида углерода и оксида азота относительно классической технологии производства плоского проката.

 

 

 

 

чрезмерному удорожанию продукции

 

 

 

 

 

Технология производства:

 

 

 

 

 

 

 

 

 

 

непрерывная разливка тонких слябов и бесконечная прокатка этих слябов до конечной толщины в двух группах клетей с промежуточным индукционным подогревом;

 

 

 

 

 

 

 

 

 

 

прокатанная полоса после ускоренного охлаждения сматывается в рулон, при этом все агрегаты напрямую связаны между собой посредством бесконечной полосы, а ее деление на рулоны заданной массы производится с помощью высокоскоростных ножниц, расположенных перед участком моталок

 

 

 

 

 

 

5.

Технология по производству высоко-

качественного горячекатаного и холоднокатаного плоского проката из легированных нержавеющих сталей и коррозионностойких, жаростойких и жаропрочных сплавов, с использованием современных цифровых решений для удовлетворения потребностей отраслей

прокат листовой горячекатаный из нержавеющих сталей, без дополнительной обработки, шириной не менее 600 мм

24.10.33

технические характеристики в соответствии с:


ГОСТ 5632-2014 "Легированные нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные";


ГОСТ 10994-74 "Сплавы прецизионные";


ГОСТ Р 54908-2012 "Металлопродукция из жаростойкой стали. Технические условия";

 

1 января 2071 г.

да

неприменимо для разраба-

тываемой технологии

технология обеспечит: развитие сопутствующих отраслей в Российской Федерации за счет производства продукции с новыми для Российской Федерации уникальными свойствами;


развитие спроса на данный вид продукции, ранее не производимой в Российской Федерации;


развитие экспортных поставок новой для Российской Федерации

1

 

промышленности Российской Федерации (включая атомное и

 

 

ГОСТ 19903-2015 "Прокат листовой горячекатаный. Сортамент";

 

 

 

 

продукции. В ходе реализации технологии планируется непрерывное усовершенствование

 

 

энергетическое машиностроение, судостроение, авиастроение,

 

 

ГОСТ 19904-90 "Прокат листовой холоднокатаный. Сортамент";

 

 

 

 

свойств продукции и разработка новых видов продукции с новыми свойствами и повышенными

 

 

оборонную, космическую, химическую промышленность, строительство, металлургию и

 

 

ГОСТ 7350-77 "Сталь толстолистовая коррозионно-стойкая, жаростойкая и жаропрочная. Технические условия";

 

 

 

 

качественными характеристиками

 

 

иные отрасли), а также в целях развития экспортного потенциала Российской Федерации

 

 

ГОСТ 5582-75 "Прокат тонколистовой коррозионно-стойкий, жаростойкий и жаропрочный. Технические условия";

 

 

 

 

 

 

 

 

 

 

ГОСТ 24982-81 "Прокат листовой из коррозионно-стойких, жаростойких и жаропрочных сплавов. Технические условия";

 

 

 

 

 

 

 

 

 

 

ГОСТ 14082-78 "Прутки и листы из прецизионных сплавов с заданным температурным коэффициентом линейного расширения. Технические условия";

 

 

 

 

 

 

 

 

 

 

ГОСТ 4986-79 "Лента холоднокатаная из коррозионно-стойкой и жаростойкой стали. Технические условия".

 

 

 

 

 

 

 

 

 

 

Отраслевые Технические условия DIN EN 10088-1:2005

 

 

 

 

 

 

6.

Технология производства жести с оловянным покрытием ("белая" жесть) для изготовления тарной и упаковочной продукции, укупорочных средств

прокат листовой из нелегированных сталей, шириной не менее 600 мм, плакированный, с гальваническим или иным покрытием

24.10.51

жесть с оловянным покрытием со следующими техническими характеристиками:


толщина от 0,10 до 0,36 мм;


ширина от 630 до 1250 мм;


термическая обработка - колпаковый или непрерывный отжиг;

 

1 января 2051 г.

да

обязательно

существует перспектива создания и разработки новых видов тары, укупорочных средств для решения экологических вопросов. Оборудование для реализации данной технологии производится ведущими компаниями производителями оборудования.

3

 

 

 

 

масса покрытия на холоднокатаный прокат от 1 до 17 г/м (на две стороны). Нормативная документация: EN 10202 "Жесть белая с электролитическим покрытием хромом/оксидом хрома для обжатия в холодном состоянии", ASTM A623M, JIS G 3303;

 

 

 

 

 

 

 

 

 

 

требования к технологии:

 

 

 

 

 

 

 

 

 

 

жесть однократной и двукратной прокатки;

 

 

 

 

 

 

 

 

 

 

подкат для "белой" жести производится на непрерывных станах "тандем" холодной прокатки или на реверсивных станах холодной прокатки из горячекатаного травленого материала (полосы) из углеродистых марок сталей;

 

 

 

 

 

 

 

 

 

 

покрытие (олово) наносится на агрегате электролитического лужения с дальнейшей пассивацией и защитой

 

 

 

 

 

 

7.

Технология производства горячекатаного сортового и фасонного проката

прокат сортовой горячекатаный полосовой прочий, без дополнительной обработки, включая смотанный после прокатки, из прочих легированных сталей

24.10.66.124

технические характеристики: рессорная полоса повышенной точности 40-120 мм на 4,5-57 мм по ГОСТ 7419 "Прокат стальной горячекатаный для рессор. Сортамент" и EN 10058 "Полоса узкая толстая горячекатаная и листовой прокат общего назначения. Размеры и допуски на форму и размеры".


Обезуглероженный слой готовой продукции из рессорной полосы до 1

1 июля 2045 г.

да

необязательно, так как в целях совершенст-

вования технологии может не быть необходимости в создании результатов интеллек-

туальной деятельности на основе данной технологии

технология подразумевает дальнейшее развитие в области освоения продукции из новых марок сталей и новых типоразмеров (производство проката из нержавеющих марок сталей, освоение профилей полособульбов;

возможность изготовления специальных профилей)

2

 

 

 

 

процента по ГОСТ 14959 "Металлопродукция из рессорно-пружинной нелегированной и легированной стали";

 

 

 

 

 

 

 

 

 

 

требования к технологии:

 

 

 

 

 

 

 

 

 

 

рессорная полоса изготавливается с применением 13-и клетевого прокатного стана

 

 

 

 

 

 

7_1.

Технология производства сварных труб нефтяного сортамента (OCTG)

электросварные обсадные трубы диаметром 114-324 мм и толщиной стенки 3,2-12,7 мм

24.20.32

электросварные обсадные трубы диаметром 114-324 мм и толщиной стенки 3,2-12,7 мм, группа прочности до P110, максимальный вес трубы 1000 кг, с полупремиальными резьбовыми соединениями и с муфтами из термообработанных и нетермообработан-

ных сталей

31 декабря 2040 г.

да

необязательно, так как объем прав на эту технологию таков, что не несет никаких ограничений на возможность совершенствования таких технологий. Ограничений на создание результатов интеллектуальной деятельности и получение патентов (свидетельств) нет

сегмент добычи и переработки углеводородов в Российской Федерации имеет колоссальный потенциал дальнейшего развития в части повышения эффективности и применения передовых решений. Технология производства труб будет развиваться в течение всего времени, пока будет осуществляться добыча углеводородов

2

(Позиция дополнительно включена распоряжением Правительства Российской Федерации от 15 февраля 2022 года N 249-р)

8.

Технология производства сортового проката для машиностроения со специальной отделкой поверхности из конвертерной стали с дробеметным удалением окалины на непрерывных

прутки холоднотянутые

24.31

технические характеристики выпускаемой продукции:


широкий диапазон диаметров и марочного состава, с высокими допусками по размеру и минимальной шероховатостью поверхности;


высокая прочность и ударная

5 июня 2030 г.

да

обязательно

высокий потенциал развития технологии обеспечивается за счет возможности предложения машиностроительной отрасли широкого марочного состава легированных сталей высокой прочности и усталостной выносливости

2

 

автоматизированных линиях. Технология износостойкого электролитического хромирования стальных прутков на горизонтальных непрерывных агрегатах для пневматической и гидравлической техники

 

 

вязкость;


отсутствие внутренних и поверхностных дефектов для производства пружин и деталей трансмиссии машин, станков-автоматов, производства пружин, холодной высадки крепежных изделий и шарикоподшипников, прессования, ковки;

 

 

 

 

 

 

9.

Технологии изготовления новых конструкций скреплений верхнего строения высокоскоростных железнодорожных магистралей

проволока холоднотянутая

24.34.1

технические характеристики:


твердость 42-49 HRC;


глубина обезуглероженного слоя не более 2 процентов от диаметра прутка; отсутствие изломов, трещин после обжатия клемм;

 

1 июня 2040 г.

да

обязательно

потенциал развития данной технологии связан с развитием высокоскоростных железнодорожных магистралей и необходимостью импортозамещения деталей скрепления верхнего пути

3

 

 

 

 

технология производства:

 

 

 

 

 

 

 

 

 

 

заготовка мерной длины горячекатанного или калиброванного проката подвергается гибке-штамповке на нескольких прессах (или многопозиционном прессе) для придания необходимой геометрической формы;

 

 

 

 

 

 

 

 

 

 

термообработка заготовки клеммы (операции закалки и отпуска) происходит для получения необходимых механических свойств

 

 

 

 

 

 

10.

Технологии производства калиброванного проката с использованием операций специальной термической обработки и отделкой поверхности для автомобильной промышленности

прутки холоднотянутые и профили со сплошным сечением из нелегированных сталей

24.31.1

технические характеристики: калиброванный прокат со сфероидизирующим отжигом и фосфатным покрытием по ГОСТ 10702-78 "Прокат из качественной конструкционной углеродистой и легированной стали для холодного выдавливания и высадки" или другой нормативной документации;

 

1 июня 2040 г.

да

обязательно

внедрение технологии позволит значительно повысить качество конечных изделий, изготавливаемых из калиброванного проката

3

 

 

 

 

калиброванный прокат со специальной отделкой поверхности из углеродистых и легированных марок стали по ГОСТ 14955-77 "Сталь качественная круглая со специальной отделкой поверхности";

 

 

 

 

 

 

 

 

 

 

требования к технологии:

 

 

 

 

 

 

 

 

 

 

сфероидизирующий отжиг в колпаковых печах, с защитной атмосферой при температуре 715-755 градусов Цельсия, с обеспечением микроструктуры состоящей из феррита и перлита, с не менее 80 процентов зернистого перлита в перлитной составляющей;

 

 

 

 

 

 

 

 

 

 

фосфатирование садочным методом, с последующим обжатием фосфата; плотность фосфатного покрытия не менее 8 г/м;

 

 

 

 

 

 

 

 

 

 

специальная отделка поверхности подразумевает достижение требуемого качества поверхности путем удаления поверхностного слоя

 

 

 

 

 

 

11.

Технологии производства проволоки с покрытиями

проволока холодно-

тянутая

24.34.1

основные требования к проволоке состоят из оценки толщины, качества покрытия и уровня прочности готового металлоизделия;

 

1 июня 2040 г.

да

обязательно

Продукция, включая проволоку сварочную для высокопрочных марок сталей и проволоку для габионных изделий, перспективна и

3

 

 

 

 

проволока оцинкованная низкоуглеродистая для габионных конструкций по ГОСТ Р 51285-99 "Сетки проволочные крученые с шестиугольными ячейками для габионных конструкций";

 

 

 

 

конкурентоспособна на мировом рынке. Продукция востребована. В части горячий покрытий цинком или гальфаном особенностью технологии является большая масса покрытия (более 265 г/м).

 

 

 

 

 

проволока низкоуглеродистая с покрытием "Galfan" по ГОСТ Р 58078-2018 "Проволока стальная и изделия из нее. Покрытия из цветных металлов на стальной проволоке";

 

 

 

 

С учетом более высокой коррозионной стойкости покрытия "гальфан" и его меньшего удельного веса требования по массе гальфана представляются завышенными. Именно использование "гальфана"

 

 

 

 

 

проволока из сварочных марок стали по ТУ 1227-036-00187240-2006, ТУ 1227-036-00187240-2006

 

 

 

 

может обеспечить получение высококачественной продукции. Оборудование для реализации данной технологии производится ведущими компаниями производителями оборудования

 

12.

Технология производства бронзированной проволоки для бортовых колец автомобильных шин

проволока холодно-

тянутая

24.34.1

технические характеристики:


допуски на размер профиля:


0,050 мм для диаметров от 1,5 до 2,05 мм;


0,060 мм для диаметров более 2,05 до 2,94 мм;

 

1 июня 2030 г.

да

обязательно

потенциал развития данной технологии связан с постоянно растущим спросом на гражданские автомобильные шины и увеличением спроса на шины для Министерства обороны Российской Федерации

2

 

 

 

 

0,070 мм для диаметров более 2,94 до 4,00 мм;

 

 

 

 

 

 

 

 

 

 

механические свойства:

 

 

 

 

 

 

 

 

 

 

предел прочности 700-980 МПа для диаметров от 1,5 до 2,5 мм термически необработанной проволоки;

 

 

 

 

 

 

 

 

 

 

предел прочности 640-930 МПа для диаметров от 2,5 до 4,0 мм термически необработанной проволоки;

 

 

 

 

 

 

 

 

 

 

предел прочности 400-540 МПа для диаметров от 1,5 до 4,0 мм термически обработанной проволоки;

 

 

 

 

 

 

 

 

 

 

относительное удлинение 100 не менее 12 процентов для термически обработанной проволоки;

 

 

 

 

 

 

 

 

 

 

минимальная масса покрытия на единицу площади поверхности г/м:

 

 

 

 

 

 

 

 

 

 

для диаметров от 1,50 до 1,99 мм - 210;

 

 

 

 

 

 

 

 

 

 

для диаметров от 2,00 до 2,19 мм - 225;

 

 

 

 

 

 

 

 

 

 

для диаметров от 2,20 до 2,69 мм - 240;

 

 

 

 

 

 

 

 

 

 

для диаметров от 2,70 до 2,99 мм - 255;

 

 

 

 

 

 

 

 

 

 

для диаметров от 3,00 до 3,39 мм - 265;

 

 

 

 

 

 

 

 

 

 

для диаметров от 3,40 до 4,0 мм - 285;

 

 

 

 

 

 

 

 

 

 

количество алюминия в покрытии должно быть 4,50Al процента 5,50;

 

 

 

 

 

 

 

 

 

 

суммарное количество редкоземельных металлов (церия и лантана) в покрытии с мишметаллами должно быть не менее 0,01 процента

 

 

 

 

 

 

13.

Технология прямого многократного волочения стальной катанки и нанесения алюмоцинкового покрытия на поверхность проволоки погружным способом на непрерывной линии агрегата алюмоцинкования

 

Проволока холодно-

тянутая из нелегированной стали

24.34.11

стальная проволока диаметрами от 1,5 до 4 мм покрытая сплавом из цинка - алюминия и сплавом цинк - алюминий, мишметалл

31 мая 2040 г.

да

обязательно

потенциал развития в области расширения сортамента в сторону уменьшения диаметра до 1,00 мм и в сторону увеличения диаметра до 5,00 мм

2

14.

Технология плазменного модифицирования металлических поверхностей

проволока стальная канатная из нелегированной стали

24.34.11.120

производимая продукция будет обеспечивать лучший захват смазки, а следовательно лучшие условия для сухого волочения;


структурированный слой продукции снижает вероятность разрушения (выкрашивания) поверхностного слоя проволоки в ходе волочения;

 

1 июня 2030 г.

да

обязательно

технологии плазменной модификации поверхности металлов могут быть использованы:


для обработки труб на трубопрокатных заводах, ремонтных базах, а также для ремонта труб в трассовых условиях;


для очистки от окалины и ржавчины штучных

2

 

 

 

 

защита поверхности проволоки от коррозии из-за пассивирующего слоя окисла железа;


требование к технологии:

 

 

 

 

металлических изделий и горячих заготовок с температурой до 1260 градусов Цельсия;


для очистки полос и листов из черных и любых цветных

 

 

 

 

 

использование метода плазменного модифицирования (вакуумно-дугового разряда) для создания на поверхности катанки структурированного слоя толщиной от нескольких микрон до нескольких десятков микрон;

 

 

 

 

металлов и сплавов со сквозной протяжкой или намоткой внутри установок на катушки;


для подготовки поверхности металлов перед плакировкой давлением и взрывом;


для очистки сварочной

 

 

 

 

 

замена экологически небезопасных методов обработки катанки (травление серной кислотой);


снижение энергозатрат для обработки катанки

 

 

 

проволоки на крупных машиностроительных и судостроительных предприятиях;


для плазменной очистки фольги и тонких лент.

 

 

 

 

 

 

 

 

 

 

Таким образом, данная технология может внести свой вклад в развитие конкурентоспособности продукции следующих отраслей: производство проволочной продукции, машиностроение, судостроение и других отраслей экономики, связанных с обработкой металлов и сплавов

 

 

15.

Технология производства латунированного металлокорда и бронзированной бортовой проволоки для шинной промышленности из конвертерной катанки диаметром 4,5-5,5 мм с механическим

латунированный металлокорд класса прочности NT, HT и SHT для шинной промыш-

ленности;


бронзированная бортовая проволока

24.34.11.190

сырьем для производства металлокорда и бортовой проволоки является катанка диаметром 4,5-5,5 мм из стали с содержанием углерода от 0,7 до 0,9 процентов, предлагаемый технологический процесс производства металлокорда включает операции:

 

5 июня 2030 г.

да

обязательно

высокий потенциал развития технологии обеспечивается за счет возможности создания широкой продуктовой линейки сортамента металлокорда для шинной промышленности и бортовой проволоки различной прочности и высокой выносливости

2

 

удалением окалины, получением заготовки диаметром до 1,0 мм без промежуточного патентирования, патентированием в печах кипящего слоя и растворе полимера,

класса прочности NT и HT для шинной промышленности

 

механическое удаление окалины и сухого волочения катанки на промежуточную проволочную заготовку диаметром 0,85-1,80 мм на 13-кратных волочильных станах;

 

 

 

 

 

 

 

термодиффузией медного и цинкового покрытия в индукционной установке, а также свивкой металлокорда на машинах двойного кручения

 

 

патентирование и гальванотермическое латунирование проволоки диаметром 0,85-1,80 мм на 48-ниточных непрерывных агрегатах с патентированием в растворе полимера и термодиффузионной обработкой медного и цинкового покрытия в индукционной установке;

 

 

 

 

 

 

 

 

 

 

мокрое волочение латунированной заготовки на проволоку диаметром 0,15-0,41 мм на 25-кратных волочильных станах;

 

 

 

 

 

 

 

 

 

 

свивка металлокорда диаметром 0,60-2,0 мм из нескольких проволок диаметром 0,15-0,41 мм на многошпульных машинах двойной свивки;

 

 

 

 

 

 

 

 

 

 

испытательный контроль и упаковку катушек с металлокордом в герметичную картонную тару весом нетто до 1500 кг;

 

 

 

 

 

 

 

 

 

 

Технологический процесс производства бортовой проволоки включает операции: механическое удаление окалины и сухого волочения катанки на промежуточную проволочную заготовку диаметром 1,5-2,9 мм на 7-13-кратных волочильных станах;

 

 

 

 

 

 

 

 

 

 

патентирование и подготовку к волочению заготовки диаметром 2,3-2,9 мм на 20-ниточных непрерывных агрегатах патентирования;

 

 

 

 

 

 

 

 

 

 

в сухое волочение заготовки диаметром 2,3-2,9 мм на проволочную заготовку диаметром 0,89-1,3 мм на 12-кратных волочильных станах;

 

 

 

 

 

 

 

 

 

 

низкотемпературный отпуск в кипящем слое и бронзирование бортовой проволоки диаметром 0,89-2,1 мм на 20-ниточных непрерывных агрегатах;

 

 

 

 

 

 

 

 

 

 

испытательный контроль и упаковку мотков бортовой проволоки в герметичную картонную тару весом нетто до 800 кг

 

 

 

 

 

 

16.

Технология производства катодов медных

катоды медные (медь рафинированная необрабо-

танная)

24.44.13.110

химический состав согласно ГОСТ 859 "Медь". Содержание меди не менее 99,99 процентов, содержание примесей не более 0,0065 процента

31 декабря 2030 г.

да

обязательно

дальнейшее развитие электролитического рафинирования меди может быть направлено на повышение плотности тока до 400 А/м и выше за счет особых режимов электролиза

 

2

16_1.

Технология
плавки медных
концентратов
в печи
с полупогружной
фурмой TSL
по технологии
"The Metso: Outotec
Ausmelt TSL
Process"

медь

24.44

технология относится к разряду "зеленых" медеплавильных технологий.
Ее особенностью является использование в качестве плавильного агрегата - печи с полупогружной фурмой, позволяющей получать отходящие газы с высоким содержанием диоксида серы, которые будут полностью перерабатываться
в серную кислоту. Печь Ausmelt или эквивалент представляет собой вертикальный стальной резервуар цилиндрической формы, футерованный огнеупорным кирпичом.

31 декабря 2072 г.

нет

необязатель-
но, так как в результате внедрения технологии будет создано производство конкуренто-
способного на внешнем рынке продукта

возможно развитие технологии в плане увеличения производитель-
ности плавильной печи путем изменения технологичес-
кого регламента и проведения возможной реконструкции без ухудшения показателей по экологической безопасности

3

На дне печи образуется ванна расплава смеси шлака и штейна. Стальная фурма опускается через отверстие в своде печи и воздух, обогащенный кислородом, подаваемый через фурму в ванну, вызывает сильное перемешивание расплава. Концентрат, полученный путем обогащения медной руды, и флюсы загружаются в печь через специальное отверстие в своде печи.

Шихта вступает в экзотермическую реакцию с кислородом дутья, что приводит к плавлению загруженного сырья. Фурма содержит одно или несколько устройств, называемых "завихрителями", которые заставляют дутье вращаться внутри фурмы, прижимая его к стенке фурмы и охлаждая ее. Эффект охлаждения приводит к образованию гарниссажа из шлака на внешней стороне фурмы. Этот слой твердого шлака защищает фурму от высоких температур внутри печи. Вихрь дутья обеспечивает барботаж расплава, смешивание его с загружаемым сырьем с кислородом в шлако-штейновой эмульсии.

Наконечник фурмы, незначительно погруженный в ванну, со временем изнашивается, и периодически фурма заменяется на новую. Изношенные наконечники впоследствии отрезаются, и новый наконечник приваривается к корпусу фурмы и фурма вновь готова к использованию. Расплавленная смесь шлака и штейна периодически или непрерывно сливается через летку по желобу в электрообогрева-
емый отстойник для разделения шлака и штейна.
При выплавке сульфидных медных концентратов большая часть энергии, необходимой для нагрева и плавления исходных материалов, получается за счет реакции кислорода с серой и железом концентрата.

Однако требуется небольшое количество дополнительной энергии. В печах можно использовать природный газ, уголь, мазут.

К преимуществам данной технологии относят: относительно низкие эксплуатационные расходы (энергоэффектив-
ность процесса, простая подготовка сырья, простота замены фурм и огнеупорной футеровки при их износе);
возможность переработки концентратов без сушки; эффективное сдерживание (утилизация) летучих выбросов;

высокую степень удаления вредных второстепенных элементов.

К недостаткам данной технологии
относят:
высокие капитальные затраты
на строительство здания высотой
40-50 м;
необходимость дополнительного
плавильного агрегата -
электроотстойника шлака.
Назначение печи - плавка руд
и концентратов на их основе.
Принцип работы - плавление руд и концентратов, с получением
жидких продуктов плавки,
за счет энергии получаемой
от выделения тепла, при окислении компонентов
сырья, а также небольшого
количества природного газа

(Позиция дополнительно включена распоряжением Правительства Российской Федерации от 9 декабря 2022 года N 3847-р)

17.

Технология создания оборудования малотоннажного производства нанодисперстных порошков меди для нового поколения резьбовых смазок

нанодисперсные медные порошки для резьбовых смазок (порошки медные)

24.44.21.110

технические параметры:


дисперсия 20-40 НМ и 20-40 мкм;


форма частиц - сферическая;


выход целевой фракции 70 процентов по массе;


содержание примесей менее 0,05 процента;


содержание кислорода - 0,02 процента

1 января 2040 г.

да

неприменимо

физико-металлургические методы получения металлических порошков создали возможность управлять дисперсностью и формой частиц. Предлагаемые технологии относятся к передовому способу в этой области и обеспечат повышение экологичности используемых резьбовых смазок за счет отсутствия в них свинца и цинка. Также общее сниженияе

1

 

 

 

 

 

 

 

 

металлической добавки в составе, повысят эксплуатационные характеристики резьбовых смазок при снижении себестоимости производства. Потенциалом развития современной технологии будет являться расширение области их использования и создания более совершенных резьбовых смазок, что обеспечит устойчивый спрос на них в России и за рубежом

 

 

18.

Технология производства сверхтонкой медной электролитической фольги

фольга медная толщиной не более 0,15 мм

24.44.25

технические характеристики:


толщина медной фольги от 9 до 105 мкм;


ширина рулона фольги не более 1290 мм.;


шероховатость глянцевой стороны не более 0,43 мкм;

31 декабря 2028 г.

да

обязательно

серийное производство продукции непрерывного, электролизного производства которое освоено в результате разработки и внедрения современных технологий, не имеет аналогов в Российской Федерации

2

 

 

 

 


временное сопротивление для фольги гальваностойкой не менее 207 Н/мм;

 

 

 

 

 

 

 

 

 

 

для фольги литий-ионных аккумуляторов не менее 310 Н/мм;

 

 

 

 

 

 

 

 

 

 

относительное удлинение для фольги гальваностойкой не менее 2 процента, для фольги литий-ионных аккумуляторов не менее 3,5 процента;

 

 

 

 

 

 

 

 

 

 

требования к технологии:

 

 

 

 

 

 

 

 

 

 

производство фольги должно осуществляться электролитическим способом с использованием электролизера барабанного типа

 

 

 

 

 

 

19.

Технология переработки молибденсодержащих отработанных катализаторов в оксид молибдена и оксид кобальта

оксид молибдена и оксид кобальта (металлы цветные и продукция из них;

спеченные материалы (керметы), зола и остатки, содержащие металлы или соединения

24.45.3

требования к продукции:


химически чистый оксид молибдена и оксид кобальта;


массовая доля примесей - не более 0,0002-0,015 процента;


соответствие национальным и международным стандартам;


требования к технологии:

 

5 июня 2035 г.

да

обязательно

потенциалом развития технологии является возможность извлечения кобальта и молибдена из отработанных катализаторов до 99 процентов. Патентная защита разработанной технологии

2

 

 

металлов, прочие)

 

основное сырье: отработанные молибден-никелевые/кобальтовые катализаторы процесса гидрокрекинга нефтеперерабатывающего производства, обожженные и очищенные от всех примесей;

 

 

 

 

 

 

 

 

 

 

технологический процесс должен включать такие стадии, как: измельчение, стадия противоточного выщелачивания и очистка от фосфора, осветление пульпы, фильтрация кека, осаждение и фильтрация Мо-кислоты, сушка и прокалка Мо-кислоты, осаждение искусственного повеллита, осаждение монооксида углерода

 

 

 

 

 

 

20.

Технология получения магния методом непрерывного электролиза расплава безводных хлоридов магния

металлический магний

24.45.30.140

химический состав должен соответствовать требованиям ГОСТ 804-93 "Магний первичный в чушках";


поверхность чушек в соответствии с ГОСТ 804-93 "Магний первичный в чушках" должна быть без флюсовых включений и продуктов горения магния;

 

1 января 2050 г.

да

обязательно

внедрение указанной технологии будет способствовать разработке новых технологий по получению сплавов на основе магния. Проект является в большей степени экспорториентированным. Мировой рынок магния растет на 4-6 процентов

2

 

 

 

 

на поверхности чушек, не подвергавшихся антикоррозионной обработке допускаются флюсовые включения и продукты горения общей площадью не более 25 мм и глубиной не более 1 мм

 

 

 

 

 

 

21.

Технология плазменно-дугового переплава

полуфабрикаты из титановых сплавов (титан и изделия из него, сплавы на основе титана, порошки)

24.45.30.180

технические характеристики:


однородные слитки, не содержащие металлургических дефектов при вовлечении более 50 процентов титановых, вторичных шихтовых материалов в виде стружки

31 декабря 2040 г.

да

обязательно

в России плазменно-дуговой переплав титановых сплавов в промышленном масштабе не применяется. Внедрение данной технологии позволит повысить качество выпускаемой продукции из титановых сплавов и снизит ее себестоимость за счет вовлечения отходов

 

2

22.

Технология полного цикла производства металлопорошковых композиций сплавов на основе алюминидов титана различного

титан и изделия из него, сплавы на основе титана, порошки титана

24.45.30.180

заявленные металлопорошковые композиции состоят из интерметаллидных сплавов на основе алюминидов титана (в первую очередь - гамма-TiAl);

 

1 января 2035 г.

да

обязательно

потенциал развития заявленной технологии крайне высок, а сама технология имеет стратегическое значение. В настоящее время работы по

2

 

фракционного состава

 

 

получение металлопорошковых композиции может быть осуществлено с помощью двух основных методов - EIGA и (или) PREP;

выбор оборудования:

 

 

 

созданию и исследованию жаропрочных сплавов на основе интерметаллида TiAl и технологий их производства и обработки активно проводятся во всех ведущих странах мира однако только компания

 

 

 

 

 

осуществляется в соответствии с выбранным методом получения металлопорошковых композиций;

 

 

 

 

General Electrics впервые применила литые лопатки из гамма-сплава Ti-48Al-2Cr-2Nb, в шестой и

 

 

 

 

 

о может быть применено оборудование для плазменной сфероидизации металлопорошковых композиций;

 

 

 

 

седьмой ступенях турбины низкого давления (ТНД) газотурбинного двигателя нового поколения GEnx-1B для самолета Boeing 787

 

 

 

 

 

сепарация и рассев по фракциям (10-63 мкм; 40-100 мкм и т.д.) проводятся на соответствующем оборудовании

 

 

 

 

Dreamliner, который успешно совершил первый коммерческий полет в 2012 году. В России в области создания и апробации гамма-сплавов помимо основной объем фундаментальных и прикладных исследований проводится во ФГУП "ВИАМ".

 

23.

Технология производства высокоточного проката из титана и сплавов на основе титана авиационного и медицинского применения

проволока, прутки, профили титановые

24.45.30.183

технические характеристики промышленной продукции:


пруток диаметром от 60 до 120 мм.;


размер макрозерна прутков до 6 баллов включительно (в полном поперечном сечении);

 

31 декабря 2040 г.

да

неприменимо

создание автоматизированного сквозного, от ковки слитка до производства готового прутка промышленного производства организованного в рамках одной структурной единицы (цеха) при использовании самого современного

1

 

 

 

 

тональность макроструктуры - матовый фон;

 

 

 

 

высокопроизводительного оборудования создает конкурентные

 

 

 

 

 

допускаются отдельные блестящие зерна до 5 баллов;

 

 

 

 

преимущества как по качеству выпускаемой продукции, так и по

 

 

 

 

 

пруток диаметром менее 60 мм.:

 

 

 

 

минимизации затрат на ее производство. Развитие производства титановых

 

 

 

 

 

размер макрозерна прутков - до 4 баллов включительно (в полном поперечном сечении);

 

 

 

 

изделий для медицинского назначения позволит увеличить объемы выпускаемой продукции за

 

 

 

 

 

тональность макроструктуры - матовый фон;

 

 

 

 

счет увеличения рынка сбыта

 

 

 

 

 

допускаются отдельные зерна смешанного фона

 

 

 

 

 

 

24.

Технология механической обработки дисков и колец из титановых сплавов для авиационного двигателестроения с максимальным диаметром до 3500 мм

детали газотурбинных двигателей, газотурбинных энергетических установок (поковки, штамповки, кольца титановые)

24.45.30.188

требование к технологии:


производство деталей дисков, катушек, колец из титановых сплавов с чистовой механической обработкой с максимальным диаметром до 3500 мм;


наличие необходимого технологического процесса, оборудования и инструмента

31 декабря 2040 г.

да

неприменимо

на данный момент наблюдается тенденция к получению механически обработанных заготовок с минимальными припусками в условиях металлургического производства для крупных изделий. В связи с этим освоение производства деталей дисков, катушек, колец из титановых сплавов с чистовой механической обработкой для производства авиационных двигателей, газотурбинных энергетических установок, изделий машиностроения имеет потенциал развития

 

1

25.

Технология производства тонкостенных цельнометаллических незамкнутых конструкций в изотермических условиях из сплавов на основе титана

поковки, штамповки, кольца титановые

24.45.30.188

технические требования и характеристики: обеспечение высокого уровня и однородности механических свойств в готовом изделии при обеспечении высокой термической стабильности в эксплуатационных условиях

31 декабря 2040 г.

да

неприменимо

в России отсутствуют промышленные технологии по производству крупногабаритных изделий методом штамповки или формовки в состоянии сверхпластичности. Освоение и промышленное внедрение данной технологии повысит качество выпускаемой продукции из титановых сплавов и позволит расширить рынки сбыта (в частности материала роторного качества)

 

1

26.

Технология изготовления точных отливок из чугуна и стали в песчано-бентонитовых формах (гибкие литейные технологии)

трубы и профили пустотелые из чугуна

24.51.20

сложные и точные тонкостенные отливки и детали из серого, высокопрочного чугуна и стали для автомобильного, сельскохозяйственного, железнодорожного, трубопроводного, судостроительной и прочих отраслей машиностроения;

 

31 декабря 2040 г.

да

обязательно

проект комплексных, гибких, автоматизированных, цифровых, кастомизированных техпроцессов и оборудования для изготовления точных отливок из чугуна и стали в песчано-бентонитовых формах - при помощи гибких литейных технологий

2

 

 

 

 

технические требования к изготавливаемым отливкам:


масса отливок - от 2 до 250 кг;


толщина стенок - от 3 мм;


сложность отливок - до 6 класса;


точность отливок по ИСО-1508062 - до 7 класса

 

 

 

направлен на создание производств с высокой степенью автоматизации. Известно, что данный процесс сочетает в себе такие технологии, как импульсно-нижнепрессовое уплотнение (ИНП-процесс), обеспечивающий технологический процесс изготовления форм (этот метод следует рассматривать как наиболее

 

 

 

 

 

 

 

 

 

эффективный из известных в настоящее время процессов формообразования), в сочетании с вихревыми турбинными смесителями, которые реализуют принцип интенсивного смешивания в щадящем режиме, при котором не происходит разрушения песчинок. Высокое качество перемешивания формовочной смеси за короткий цикл обеспечивает снижение расхода электроэнергии.

 

 

 

 

 

 

 

 

 

 

Автоматизированный процесс, то есть имеющий цифровое программное обеспечение, позволит реализовать заявленные в проекте технические, экономические и социальные задачи - изготовление ответственных сложных точных отливок с толщиной стенок до 3 мм с повышенной точностью и качеством поверхностей, а также снижение расхода шихтовых и формовочных материалов до 25 процентов

 

 

27.

Технология центробежного литья безраструбных труб из чугуна с нанесением защитных покрытий на внутреннюю и внешнюю поверхность

трубы и профили пустотелые из чугуна (трубы чугунные)

24.51.20.110

данная технология позволяет изготавливать продукцию со следующими параметрами:


негорючесть;


отсутствие выделения ядовитых веществ;


низкий уровень шума (не более 16 dB);


мерная длина продукции 3000 мм

 

31 декабря 2030 г.

да

обязательно

потенциал данной технологии заключается в импортозамещении продукции, а также в использовании отечественной мирового качества при реализации проектов гражданского строительства и реализации инфраструктурных объектов

3

28.

Технология изготовления емкостей для химической, нефтехимической и газовой отраслей методом гибридной лазерной сварки

емкостное оборудование для нефте-

химической и газовой отрасли (резервуары, цистерны и аналогичные емкости из металлов прочие)

25.29.1

к технологии предъявляются требования по обеспечению механических характеристик, показателей ударной вязкости и значений твердости сварных соединений, выполненных методом лазер-гибридной сварки, как у основного металла, а также обеспечение равнопрочности в соответствии с международными стандартами

1 июля 2050 г.

да

обязательно

уровень потенциала развития технологии оценен как средний. Применение лазер-гибридной сварки при изготовлении толстостенного емкостного оборудования позволит снизить производственный цикл до 60 процентов за счет применения высокопроизводительного процесса лазерной сварки и значительного снижения

3

 

 

 

 

 

 

 

 

материалоемкости из-за уменьшения разделки. Применение высокоинтенсивного концентрированного источника тепла в виде лазера, а также уменьшение размеров разделки, позволит снизить внутренние послесварочные напряжения и деформации, что повысит срок службы оборудования и значительно снизит вероятность внештатных ситуаций, связанных с нарушением герметичности сварных соединений в процессе эксплуатации в самых экстремальных условиях

 

 

28_1.

Технология производства шаровых сегментных опорных частей на основе полимерных антифрикционных материалов для мостовых сооружений

шаровые сегментные опорные части на основе полимерных антифрикционных материалов

25.11.2

характеристическое значение прочности полимерного антифрикционного материала при сжатии (обусловленное ползучестью материала):


до 170 МПа при максимальной температуре +35 градусов Цельсия;


130 МПа при температуре +48 градусов Цельсия;

1 января 2050 г.

да

неприменимо

применение технологии увеличит сроки эксплуатации мостовых сооружений, снизит ресурсоемкость строительства новых мостовых сооружений, снизит эксплуатационные затраты на содержание мостовых сооружений

1

80 МПа при температуре +70 градусов Цельсия.


Гарантированные значения коэффициента трения:


минимальный 0,06 при контактном давлении 5 МПа;


максимальный 0,02 при контактном давлении 60 МПа

(Позиция дополнительно включена распоряжением Правительства Российской Федерации от 9 ноября 2023 года N 3133-р)

29.

Технология сварки сталей перлитного класса методом Tandem Twin при изготовлении нефтехимического оборудования

емкостное оборудование для нефте-

химической и газовой отрасли (резервуары, цистерны и аналогичные емкости из металлов прочие)

25.29.1

к технологии предъявляются требования по обеспечению механических характеристик, показателей ударной вязкости и значений твердости сварных соединений сталей перлитного класса, выполненных методом Tandem Twin, как у основного металла, а также обеспечение равнопрочности в соответствии с международными стандартами

1 июля 2050 г.

да

обязательно

уровень потенциала развития технологии оценен как средний. Применение комбинированного процесса сварки двумя дугами в одну сварочную ванну (tandem-процесс) с дополнительной подачей "холодной проволоки" к каждой дуге (twin-процесс) позволит уменьшить материалоемкость процесса изготовления емкостного оборудования за счет

3

 

 

 

 

 

 

 

 

уменьшения ширины разделки и снизит производственный цикл. Также применение процесса tandem-twin позволит снизить тепловложение в сварной шов и околошовную зону, что снизит вероятность возникновения охрупчивания металла из-за перегрева при выполнении сварки и повысит стойкость сварных соединений к неблагоприятному влиянию низких температур при эксплуатации емкостного оборудования в регионах с низкими и экстремально низкими температурами окружающего воздуха

 

 

30.

Технология проектирования, изготовления и монтажа шаровых резервуаров для хранения жидкого этана и этилена

криогенные шаровые резервуары, работающие под избыточным давлением, для хранения жидкого этана и этилена (емкости металлические для сжатых или сжиженных газов)

25.29.12

шаровые резервуары, изготовленные из углеродистых низколегированных марок сталей (SA537 Cl2) и коррозионно-стойких ферритных сталей с содержанием никеля до 9 процентов (сталей SA-203 Gr), а также отечественных аналогов - железо-никелевых сплавов (OH и OH) в средах жидкого этана и жидкого этилена в режимах самоохлаждения сжиженного газа до температур минус 89 градусов Цельсия для этана и минус 104 градусов Цельсия для этилена

1 июля 2050 г.

да

обязательно

в Российской Федерации по состоянию на сегодняшний день отсутствует нормативная база по проектированию и сооружению производств и парков хранения сжиженного этана и этилена. Сооружения подобных объектов ведутся по индивидуальным проектным решениям и специальным техническим условиям. Проекты, реализованные ранее по строительству парков хранения жидкого этана и этилена на территории Российской Федерации,

3

 

 

 

 

 

 

 

 

реализовывались с применением дорогостоящих аустенитных материалов. Рынок производства этана и этилена находится на стадии формирования. В связи с чем уровень потенциала развития технологии оценен как высокий

 

 

31.

Технология индукционного отжига полуфабрикатов гильзы патронов стрелкового оружия на автоматических роторных линиях моделей М-ЛГ-1 и М-ЛГ-4 без применения специализированных преобразователей ТПЧ-20 и ТПЧ-63

патроны и боеприпасы прочие и их детали

25.40.13.190

требования к технологии:


сокращение затрат на восстановление и ремонт индукторов с магнитопроводом из электротехнической стали и ликвидацию операции лакирования индукторов и трудоемкого процесса сушки индукторов;


снижение расходов на электроэнергию

1 июня 2030 г.

да

обязательно

возможность применения транзисторного генератора серийного производства с программным обеспечением даст возможность снизить затраты на восстановление и ремонт индукторов с магнитопроводом из электротехнической стали и ликвидацию вредной для здоровья операции лакирования индукторов и трудоемкого процесса сушки индукторов. Также существенно снизит расходы на электроэнергию за счет конструктивной особенности транзисторных генераторов

 

2

32.

Технология изготовления режущего инструмента из новых материалов на основе твердых сплавов с уменьшенным содержанием карбида вольфрама или его отсутствием при введении в состав боридов и карбидов тугоплавких металлов, включающая нанесение на инструмент сложных многослойных наноструктури-

рованных сверхтвердых покрытий

инструменты рабочие сменные для станков или для ручного инструмента (с механическим приводом или без него)

25.73.40

металлорежущий инструмент, выпускаемый с применением рассматриваемой современной технологии, будет иметь следующие эксплуатационные характеристики (на примере пластины CNMG 120412 с покрытием):


группа резания ISO P:


V = 220 м/мин;


S = 0,2 мм/об;


ar = 1,5 мм;


время работы 40 минут;


износ по задней поверхности

31 декабря 2034 г.

да

неприменимо

технология изготовления режущего инструмента для тяжелого точения и обработки труднообрабатываемых материалов, основанная на применении твердых сплавов с уменьшенным содержанием карбида вольфрама и без него, а также применения специальных сложных многослойных наноструктурированных сверхтвердых покрытий. Технология ввиду новизны обозначенных подходов имеет значительный потенциал развития ввиду следующих факторов:

 

1

 

 

 

 

0,25 мм;


группа резания ISO M:


V = 180 м/мин;


S = 0,2 мм/об;


ar = 1,5 мм;


время работы 40 минут;


износ по задней поверхности 0,3 мм;


группа резания ISO К:

 

 

 

дефицитность и дороговизна порошков карбида вольфрама для производства инструмента;


заканчивающийся потенциал развития инструментальных твердых сплавов на основе карбида вольфрама (необходимо создание новых сплавов с перспективными свойствами с минимальным содержанием данного соединения);

 

 

 

 

 

 


V = 250 м/мин,


S = 0,15 мм/об,


ar = 1,5 мм;


время работы 40 минут;


износ по задней поверхности 0,3 мм;


высокий уровень эксплуатационных характеристик продукции обеспечивается высоким уровнем физико-механических характеристик применяемых

 

 

 

необходимость дальнейшего повышения производительности и эффективности операций механической обработки в области тяжелого точения и обработки труднообрабатываемых материалов


применение многослойных покрытий с более высокими эксплуатационными характеристиками (износостойкость, прочность, антифрикционные свойства);


необходимость обеспечения

 

 

 

 

 

инструментальных материалов, которые также планируются к разработке. свойства:


марка сплава V1:

 

 

 

технологической безопасности механообрабатывающих производств России от ограничений импортных поставок режущего

 

 

 

 

 


плотность 6,3-6,7 г/см;


твердость 92,5-93,0;


HRA или HV 16,5-17,0 ГПа, трещиностойкость 7,0-7,5 МПам^(1/2), прочность при изгибе 2100-2300 МПа;


марка сплава V2:


плотность 6,5-7,0 г/см;


твердость 92,0-92,5;


HRA или HV 15,0-15,5 ГПа;


трещиностойкость 8,5-9,0 МПам^(1/2);


прочность при изгибе 2400-2600 МПа;


разрабатываемая

 

 

 

инструмента. Создавшаяся в станкоинструментальной промышленности России ситуация с зависимостью российского машиностроения от импортного инструмента, требует для обеспечения технологической безопасности создание отечественного производства режущего инструмента мирового уровня на базе отечественных технологий. Динамика развития рынка инструмента в последние годы связана с развитием предприятий оборонно-промышленного комплекса в рамках задач по перевооружению армии.


В рамках этого процесса значительная доля машиностроительных

 

 

 

 

 

современная технология будет включать в себя следующие стадии:


синтез ключевых порошковых компонентов;


подготовка порошковой смеси (смешение и помол);


грануляция;


прессование заготовок на автоматическом прессе;


вакуумно-компрессионное спекание;

 

 

 

 

предприятий России провела обновление станочного парка и сформировала потребность в современном высококачественном отечественном режущем инструменте. Также стабильное развитие спроса на рынке инструмента обеспечивают предприятия топливно-энергетического комплекса и транспортного машиностроения

 

 

 

 

 

финишная обработка;


нанесение покрытия (в зависимости от области применения);


достичь высокого уровня физико-механических характеристик возможно за счет использования высококачественных субмикронных исходных порошков, а также применения современных технологий формования и спекания твердых сплавов

 

 

 

 

 

 

33.

Технология производства твердосплавной продукции

инструменты рабочие сменные для станков или для ручного инструмента (с механическим приводом или без него)

25.73.40

продукция, выполненная по данной современной технологии, должна соответствовать следующим параметрам:


процентное содержание кобальта - 8-15 процентов;

 

5 июня 2030 г.

да

обязательно

потенциал в области возможного развития производства высококачественной твердосплавной продукции по ресурсосберегающей технологии

2

 

 

 

 

предел прочности при изгибе, - 1960 Н/мм;

 

 

 

 

 

 

 

 

 

 

плотность 14,1-14,4 г/см;

 

 

 

 

 

 

 

 

 

 

твердость HRA - не менее 86;

 

 

 

 

 

 

 

 

 

 

предельные отклонения линейных размеров - менее 2 процентов (размер изделий более 18 мм);

 

 

 

 

 

 

 

 

 

 

предельные отклонения линейных размеров - менее 3 процентов (размер изделий 10-18 мм);

 

 

 

 

 

 

 

 

 

 

предельные отклонения линейных размеров - менее 5 процентов (размер изделий менее 10 мм);

 

 

 

 

 

 

 

 

 

 

предельные отклонения угловых размеров - менее 1 градуса (для углов менее 10 градусов и более 90 градусов);

 

 

 

 

 

 

 

 

 

 

предельные отклонения угловых размеров - менее 2 градусов (для углов свыше 10 градусов и менее 90 градусов);

 

 

 

 

 

 

 

 

 

 

глубина рисок и вмятин - не более 0,2 мм;

 

 

 

 

 

 

 

 

 

 

размеры выкрашиваний на режущих кромках - не более 0,2 мм;

 

 

 

 

 

 

 

 

 

 

ширина или высота заусенцев на режущих кромках - не более 0,3 мм;

 

 

 

 

 

 

 

 

 

 

продукция должна соответствовать требованиям нормативной документации:

 

 

 

 

 

 

 

 

 

 

ГОСТ 19042-80, ИСО 1832-85 "Пластины сменные многогранные. Классификация. Система обозначений";

 

 

 

 

 

 

 

 

 

 

ISO 9001-200, API Q1;

 

 

 

 

 

 

 

 

 

 

ГОСТ 3882-75 "Сплавы твердые спеченные";

 

 

 

 

 

 

 

 

 

 

ГОСТ 4411-79 "Изделия твердосплавные для горного инструмента";

 

 

 

 

 

 

 

 

 

 

ГОСТ 880-75 "Изделия твердосплавные для горного инструмента. Формы и размеры", ТУ 48-42-44-2002

 

 

 

 

 

 

34.

Технология производства двухслойных алмазно-

твердосплавных пластин для высоко-эффективного инструмента, используемого при добыче нефти, газа и дорожном строительстве

алмазно-

твердосплавные пластины, используемые в качестве режущих элементов в высоко-

эффективном инструменте (резцы

25.73.40.273

основные технические характеристики алмазно-твердосплавных пластин:


диаметр от 13,44 до 25,00 мм;


высота от 4,5 до 8,03 мм;


толщина алмазного слоя: 1-2 мм;

 

31 декабря 2050 г.

да

обязательно

потенциал развития предлагаемой современной технологии высокий и обуславливается:


отсутствием промышленного производства алмазно-твердосплавных пластин в Российской Федерации;

2

 

 

минерало-

керамические)

 

категория буримости пород: 4-12;


твердость от 70 до 80 ГПа;


прочность на сжатие - 1,3-1,4 ГПа;


прочность на изгиб - 1,25-1,3 ГПа;


трещиностойкость - 5,0-5,8;

 

 

 

 

монополизацией рынка со стороны транснациональных корпораций;


введением экономических санкций против Российской Федерации и некачественным импортом из третьих стран;


угрозой технологической и оборонной безопасности страны.  

 

 

 

 

 

износостойкость - 0,22-0,3 мг/кг;


требования к технологии:


спекание заготовки алмазно-твердосплавных пластин при давлении 4,5-7 ГПа и температуре 1400-16000 градусов Цельсия;

 

 

 

 


     Алмазно-твердосплавные пластины также могут быть использованы для различных режущих инструментов:


оснащения пил по природному камню (граниту, мрамору), бетону, железобетону, древесным

 

механическая обработка заготовки алмазно-твердосплавных пластин;


контроль потребительских характеристик полученных алмазно-твердосплавных пластин

плитам, керамике и пластмассам, изготовления напайных и неперетачиваемых пластин лезвийных инструментов, применяемых при обработке цветных металлов, сплавов и неметаллических материалов, а также фрез для горно-проходческих машин и дорожно-строительной техники

35.

Технология упрочнения поверхностей деталей методом микродугового оксидирования

изделия металлические прочие

25.99.2

в результате внедрения технологии будут достигнуты следующие технические параметры продукции:


износостойкость поверхностей увеличится не менее, чем в 2 раза по сравнению с поверхностями из стали и чугуна без специальных покрытий;

 

3 июня 2030 г.

да

обязательно

разработанные по данной технологии покрытия обеспечивают долговременную защиту деталей из алюминиевых, магниевых и титановых сплавов от износа, коррозии, эрозии и теплового воздействия. Покрытие имеет высокую адгезию к поверхности даже при высоких нагрузках.

2

 

 

 

 

масса деталей снизится не менее, чем в 3 раза за счет замены деталей из стали и чугуна на детали из алюминиевых сплавов;


коррозионная стойкость деталей увеличится не менее, чем в 1,5 раза (в зависимости от алюминиевого сплава увеличение коррозионной стойкости составит 1,5-34,0 раза);

 

 

 

 

Позволяет увеличить долговечность деталей в 2-4 раза даже при функционировании без смазочного материала. Внедрение технологии позволит увеличить долговечность и надежность работы устройств и оборудования при одновременном снижении их массы

 

 

 

 

 

микротвердость поверхности увеличится в 3-14 раз;


увеличится тепловая защита поверхности, так как покрытие имеет коэффициент теплопроводности от 0,5 до 6,0 Вт/(мК) в зависимости процесса микродугового оксидирования, технические характеристики:

 

 

 

 

 

 

 

 

 

 

детали должны испытывать воздействие значительных механических нагрузок (детали узлов трения медицинских роботов, функционирующие без смазочного материала и испытывающие воздействия сил трения, вызывающих их износ, детали экзоскелетов, детали двигателей);


детали продукции должны быть изготовлены из легких сплавов вентильных металлов:

 

 

 

 

 

 

 

 

 

 

алюминиевых, титановых или магниевых или иметь возможность замены основного материала (стали) на вышеприведенные сплавы, за счет чего снизится вес оборудования, что особенно актуально и для медицинских роботов, и для экзоскелетов, а также для авиадвигателестроения

 

 

 

 

 

 

36.

Технология производства чипов для силовой электроники на базе кремния

диоды и транзисторы

26.11.2

технические характеристики:


мощные высоковольтные биполярные транзисторы с изолированным затвором типа IGBT, изготавливаемые по Trench технологии затвора и Field-Stop исполнении коллекторных слоев с номинальными токами IC nom от 50 до 200 А, а также номинальными напряжениями VCE nom - 1200 и 1700 В;

 

1 января 2040 г.

да

неприменимо

конкуренцию на рынке силовых полупроводниковых приборов можно охарактеризовать как умеренную. Появление новых участников рынка ограничено высоким уровнем начальных инвестиций как в оборудование, так и в НИОКР. Кроме того, следует отметить низкий риск смены поставщиков в рамках отдельно взятого предприятия, поскольку

1

 

 

 

 

параллельные диоды с мягкой характеристикой обратного восстановления с номинальными токами IF от 50 до 200 А и номинальными напряжениями VR nom - 1200 и 1700 В

 

 

 

 

испытания продукции новых производителей могут составлять до 1,5 лет. Тенденции технологического развития отрасли задают современные силовые полупроводниковые приборы типа IGBT и SiC MOSFEET. В настоящий момент лишь несколько компаний в мире освоили технологию

 

 

 

 

 

 

 

 

 

производства чипов силовой электроники, они же являются мировыми лидерами отрасли. В отечественной силовой электронике есть несколько компаний, владеющих технологией производства биполярных приборов и IGBT транзисторов. При этом IGBT транзисторы производятся с использованием чипов зарубежного производства.

 

 

 

 

 

 

 

 

 

Это ключевой момент, так как стоимость чипа, как правило, определяет более 50 процентов конечной цены изделия. В то же время лидеры отрасли одновременно являются производителями самих чипов, силовых полупроводниковых приборов и преобразовательной техники. В совокупности вышеуказанные компании занимают более 50 процентов мирового рынка силовой электроники.

 

 

 

 

 

 

 

 

 

Тем самым они формируют конструкторские и технологические решения, на которые ориентируются другие участники рынка. Освоение данной технологии производства в России позволило бы снизить зависимость отечественной электроники от иностранных производителей, овладеть новыми компетенциями, расширить номенклатуру производимых силовых полупроводников приборов.

 

 

 

 

 

 

 

 

 

Освоение trench технологии производства силовых полупроводниковых приборов на основе кремния на пластинах 200 мм позволит в дальнейшем освоить серийное производство кристаллов силовых полупроводниковых приборов с характеристиками, значительно превышающими заявленные, а также освоить производство других типов силовых полупроводниковых приборов

 

 

37.

Технология производства мощных лазерных диодов ближнего инфракрасного диапазона (900-1060 нм) на основе полупроводниковых гетероструктур

диоды лазерные (полу-

проводниковые лазеры)

26.11.22.130

технические характеристики:


спектр излучения разрабатываемых лазерных модулей должен соответствовать длинам волн 915, 976, 980 и 1060 нм;


мощность излучения для одномодовых лазерных диодов должна превышать 200 мВт, для многомодовых - 10 Вт

1 января 2025 г.

да

обязательно

разработанная технология позволит создать полностью отечественные лазерные установки для прецизионной обработки материалов (резки, сварки, гравировки, спекании и прочего), медицинские аппараты для лазерной хирургии и офтальмологии, систем межспутникового информационного обмена и магистральных линий оптической связи

 

2

38.

Технология сборки силовых модулей IGBT паяной конструкции

приборы полу-

проводниковые прочие

26.11.22.190

требования к основным техническим характеристикам:


напряжение от 1700 В до 6500 В;


ток от 600 А до 1800 А

1 января 2030 г.

да

обязательно

применение современных технологий преобразования электроэнергии посредством силовой полупроводниковой электроники позволяет:


обеспечивать необходимое количество и качество электроэнергии;

 

3

 

 

 

 

 

 

 

 

снизить потери при ее генерации, транспортировке и потреблении;


увеличить надежность электроснабжения и коэффициент полезной деятельности электротехнических устройств;

 

 

 

 

 

 

 

 

 

 

улучшить экологию окружающей среды. В свою очередь, реализация проекта по сборке IGBT модулей позволит решить ряд актуальных задач, стоящих перед силовой электроникой:


повышение ресурса работы преобразователей;

 

 

 

 

 

 

 

 

 

 

повышение климатической стойкости и надежности;


снижение себестоимости и стоимости жизненного цикла (стоимости владения);


повышение удельной мощности преобразователей;

 

 

 

 

 

 

 

 

 

 

снижение массогабаритных показателей;


повышение коэффициента полезной деятельности преобразователей электроэнергии