Этот документ входит в профессиональные
справочные системы «Кодекс» и  «Техэксперт»

ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

ПОСТАНОВЛЕНИЕ

от 16 марта 2020 года N 287

Об утверждении Федеральной научно-технической программы развития синхротронных и нейтронных исследований и исследовательской инфраструктуры на 2019-2027 годы



В целях реализации Указа Президента Российской Федерации от 25 июля 2019 г. N 356 "О мерах по развитию синхротронных и нейтронных исследований и исследовательской инфраструктуры в Российской Федерации" Правительство Российской Федерации

постановляет:

1. Утвердить прилагаемую Федеральную научно-техническую программу развития синхротронных и нейтронных исследований и исследовательской инфраструктуры на 2019-2027 годы.

2. Министерству науки и высшего образования Российской Федерации в 6-месячный срок со дня вступления в силу настоящего постановления обеспечить принятие нормативных правовых актов, необходимых для реализации Программы, утвержденной настоящим постановлением.

3. Министерству науки и высшего образования Российской Федерации совместно с заинтересованными федеральными органами исполнительной власти и федеральным государственным бюджетным учреждением "Национальный исследовательский центр "Курчатовский институт" представлять в Правительство Российской Федерации ежегодно, начиная с 2021 года, до 25 марта года, следующего за отчетным, проект доклада Президенту Российской Федерации о ходе реализации Программы, утвержденной настоящим постановлением.

4. Настоящее постановление распространяется на правоотношения, возникшие с 25 июля 2019 г.

Председатель Правительства
Российской Федерации
М.Мишустин

     

УТВЕРЖДЕНА
постановлением Правительства
Российской Федерации
от 16 марта 2020 года N 287

     

Федеральная научно-техническая программа развития синхротронных и нейтронных исследований и исследовательской инфраструктуры на 2019-2027 годы

     

Паспорт Федеральной научно-технической программы развития синхротронных и нейтронных исследований и исследовательской инфраструктуры на 2019-2027 годы


Наименование Программы

-

Федеральная научно-техническая программа развития синхротронных и нейтронных исследований и исследовательской инфраструктуры на 2019-2027 годы

Основание для разработки Программы

-

Указ Президента Российской Федерации от 25 июля 2019 г. N 356 "О мерах по развитию синхротронных и нейтронных исследований и исследовательской инфраструктуры в Российской Федерации"

Заказчик - координатор
Программы

-

Министерство науки и высшего образования Российской Федерации

Ответственные
исполнители Программы

-

Министерство промышленности и торговли Российской Федерации,
Министерство здравоохранения Российской Федерации,
Министерство иностранных дел Российской Федерации,
Министерство экономического развития Российской Федерации,
федеральное государственное бюджетное учреждение "Российская академия наук",
Государственная корпорация по атомной энергии "Росатом"

Соисполнители Программы

-

органы исполнительной власти субъектов Российской Федерации, фонды поддержки научной, научно-технической, инновационной деятельности, а также институты развития и другие организации

Головная научная
организация
Программы

-

федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"

Участники Программы

-

научные организации и образовательные организации высшего образования, организации, действующие в реальном секторе экономики, а также иные организации различных форм собственности или объединения таких организаций

Цели Программы

-

комплексное решение задач ускоренного развития синхротронных и нейтронных исследований, необходимых для создания прорывных технологий;
обеспечение создания и развития исследовательской инфраструктуры в Российской Федерации

Задачи Программы

-

создание условий для проведения синхротронных и нейтронных исследований (разработок), направленных на решение принципиально новых фундаментальных, крупных прикладных и социально ориентированных задач, в том числе по переходу к персонализированной медицине и высокотехнологичному здравоохранению, с участием образовательных организаций высшего образования, научных организаций, организаций, действующих в реальном секторе экономики, и представителей международного научного сообщества;

создание и развитие исследовательской инфраструктуры, включая проектирование, строительство и техническую эксплуатацию (с соблюдением нормативных требований безопасности) уникальных научных установок класса "мегасайенс", а также отечественной приборно-инструментальной базы для оснащения экспериментальных (исследовательских) станций с целью проведения синхротронных и нейтронных исследований (разработок);
подготовка специалистов в области разработки, проектирования и строительства источников синхротронного и нейтронного излучения, а также научных кадров для проведения синхротронных и нейтронных исследований (разработок) в целях получения научных результатов мирового уровня

Научные направления реализации Программы

-

синхротронные и нейтронные исследования (разработки) в области материаловедения для развития наукоемких производственных технологий;
синхротронные и нейтронные исследования (разработки) в области живых систем, органических и гибридных материалов;
синхротронные и нейтронные исследования (разработки) в области социогуманитарных наук;
развитие ускорительных, реакторных и ядерных технологий, в том числе в области ядерной медицины

Срок и этапы
реализации Программы

-

2019-2027 годы, в том числе:
первый этап - 2019-2024 годы;
второй этап - 2025-2027 годы

Объемы
финансирования
Программы

-

138318,04 млн. рублей.
Объем бюджетных ассигнований федерального бюджета на реализацию Программы:
132298,04 млн. рублей, в том числе:
на 2019 год - 4439,68 млн. рублей;
на 2020 год - 7123,83 млн. рублей;
на 2021 год - 11933,36 млн. рублей;
на 2022 год - 25111,27 млн. рублей;
на 2023 год - 32337,63 млн. рублей;
на 2024 год - 35544,35 млн. рублей;

на 2025 год - 7497,92 млн. рублей;
на 2026 год - 5340 млн. рублей;
на 2027 год - 2970 млн. рублей.
Объем финансирования из средств внебюджетных источников:
6020 млн. рублей, в том числе:
на 2019 год - - ;
на 2020 год - - ;
на 2021 год - 570 млн. рублей;
на 2022 год - 770 млн. рублей;
на 2023 год - 1759,1 млн. рублей;
на 2024 год - 1870,9 млн. рублей;
на 2025 год - 350 млн. рублей;
на 2026 год - 350 млн. рублей;
на 2027 год - 350 млн. рублей.
Финансовое обеспечение Программы может быть скорректировано при утверждении технических проектов создания (модернизации) объектов
исследовательской инфраструктуры, включая уникальные научные установки класса "мегасайенс"

Источники
финансирования
Программы

-

бюджетные ассигнования федерального бюджета на реализацию государственных программ Российской Федерации
"Научно-технологическое развитие Российской Федерации"
, "Развитие образования", "Развитие промышленности и повышение ее конкурентоспособности", бюджетные ассигнования бюджетов субъектов Российской Федерации, средства внебюджетных источников

Целевые индикаторы и показатели Программы

-

количество введенных в эксплуатацию в рамках реализации Программы экспериментальных станций на отечественных синхротронных и нейтронных установках,
нарастающим итогом - не менее 25;
количество разработанных или адаптированных ускорительных и реакторных технологий, технических решений, нарастающим итогом -
не менее 30;
количество разработанных или адаптированных измерительных и (или) метрологических методик, основанных на использовании синхротронного или нейтронного излучения,
нарастающим итогом - не менее 32;
численность специалистов в области разработки, проектирования, строительства и технической эксплуатации, прошедших подготовку, повышение квалификации или профессиональную переподготовку и трудоустроенных по специальности, - не менее 200;
численность научных кадров, прошедших подготовку, повышение квалификации или профессиональную переподготовку по направлениям реализации Программы и трудоустроенных по специальности, - не менее 525;

доля времени работы исследовательских (экспериментальных) станций уникальных научных установок класса "мегасайенс" в интересах российских и зарубежных организаций, действующих в реальном секторе экономики, в общем времени работы исследовательских (экспериментальных) станций уникальных научных установок класса "мегасайенс" - не менее 16 процентов к 2027 году; количество публикаций в области синхротронных и нейтронных исследований (разработок) в журналах, индексированных в международных базах данных, - не менее 960;
количество заявок на получение патентов на изобретения в области синхротронных и нейтронных исследований (разработок), а также заявок на получение патентов на изобретения разработанных в процессе создания новых и модернизации существующих источников синхротронного излучения и нейтронов - не менее 50;
количество новых или усовершенствованных технологий получения и контроля качества конструкционных и функциональных материалов, изделий на их основе, перешедших в стадию внедрения, - не менее 28; количество новых или усовершенствованных биомедицинских, продовольственных и других технологий, основанных на использовании свойств живых систем, органических и гибридных материалов, перешедших в стадию внедрения, - не менее 20;
число лиц, прошедших диагностику и лечение с использованием ядерных технологий, - не менее 1800 человек;
количество внедренных технологий в области ядерной медицины - не менее 15

Ожидаемые результаты реализации Программы

-

создан (включая проектирование, строительство и техническую эксплуатацию) источник синхротронного излучения поколения
4+ (Новосибирская область) (ЦКП "СКИФ");
создан (включая техническую эксплуатацию) прототип импульсного источника нейтронов на основе реакции испарительно-скалывающего типа (г.Протвино Московской области);
введено в эксплуатацию (включая проектирование, строительство и техническую эксплуатацию) не менее 25 исследовательских станций Международного центра нейтронных исследований на базе высокопоточного реактора "ПИК" (г.Гатчина Ленинградской области); разработан проект уникальной научной установки класса "мегасайенс" (о.Русский);
модернизирован Курчатовский специализированный источник синхротронного излучения "КИСИ-Курчатов" (г.Москва);
создан (включая проектирование, строительство и техническую эксплуатацию) принципиально новый перспективный источник, превосходящий по техническим характеристикам действующие и проектируемые международные источники синхротронного излучения; модернизирована исследовательская инфраструктура в Российской Федерации для проведения синхротронных и нейтронных исследований (разработок), включая создание единой цифровой платформы для хранения, обработки и анализа экспериментальных данных с интегрированной в нее унифицированной системой управления экспериментом;

на базе федерального государственного бюджетного учреждения "Национальный исследовательский центр "Курчатовский институт" (далее - национальный исследовательский центр "Курчатовский институт") создан новейший отечественный научно-образовательный медицинский центр ядерной медицины, включающий в себя модернизированные комплексы ионной (углеродной), протонной лучевой терапии, онкоофтальмологический комплекс и радиоизотопный комплекс наработки широкого спектра медицинских радионуклидов для создания радиофармпрепаратов и отработки технологий для диагностики и терапии онкологических заболеваний, болезней глаза и его придаточного аппарата, болезней системы кровообращения, болезней нервной системы и иных заболеваний в целях их внедрения в субъектах Российской Федерации для обеспечения доступности медицинской помощи, разработаны типовые требования к центрам ядерной медицины;
получены научно-технологические результаты, необходимые для разработки прорывных технологий для промышленности, а также технологий, основанных на использовании свойств живых систем, органических и гибридных материалов;
обеспечена подготовка (в том числе повышение квалификации и профессиональная переподготовка) специалистов в области разработки, проектирования, строительства и технической эксплуатации источников синхротронного и нейтронного излучения; обеспечено увеличение численности научных кадров для проведения синхротронных и нейтронных исследований (разработок);
обеспечены разработка и внедрение образовательных программ и программ дополнительного профессионального образования по направлению "ядерная медицина";
обеспечено международное сотрудничество при создании и развитии исследовательской инфраструктуры, подготовке кадров и проведении синхротронных и нейтронных исследований (разработок), в том числе с использованием зарубежных источников синхротронного и нейтронного излучения

     

I. Основные термины, используемые в Программе


В Федеральной научно-технической программе развития синхротронных и нейтронных исследований и исследовательской инфраструктуры на 2019-2027 годы (далее - Программа) использованы понятия, соответствующие установленным статьей 3 Федерального закона "Об использовании атомной энергии", а также следующие дополнительные понятия:

"адронная терапия" - терапия, использующая для лучевого лечения больных ускоренные пучки протонов и тяжелых ионов (в частности ионы углерода), а также потоки нейтронов и мезонов;

"гамма-терапия" - радиотерапия с использованием гамма-излучения, в том числе дистанционное, аппликационное (поверхностное), внутриполостное и внутритканевое облучение очага поражения;

"исследовательская инфраструктура" - инфраструктура, включающая в том числе информационные системы, уникальные научные установки, уникальные научные установки класса "мегасайенс", позволяющая осуществлять исследования и разработки на мировом уровне;

"конвенциональная (или конвенциальная) лучевая терапия" - традиционная (применительно к лучевой терапии - фотонная и электронная) терапия, которая проводится по стандартизированным методикам;

"лучевая диагностика" - наука и раздел медицины о применении излучений для изучения строения и функций нормальных и патологически измененных органов и систем человека в целях распознавания болезней;

"лучевая терапия" - наука и область медицины, основанные на применении ионизирующих излучений для лечения больных. Лучевая терапия делится на контактную лучевую терапию и дистанционную лучевую терапию;

"медицинская радиология" - наука и область медицины, основанные на применении излучений для диагностики и лечения онкологических, неврологических болезней, болезней сердца и сосудов и других социально значимых заболеваний, а также патологических состояний после воздействия ионизирующих излучений. Медицинская радиология включает 4 кластера: лучевая диагностика, лучевая терапия, ядерная медицина и радиационная медицина;

"нейтронозахватная терапия" - терапия пучками тепловых (с энергиями менее 0,5 эВ) и надтепловых (с энергиями 0,5-10 эВ) нейтронов;

"позитронная эмиссионная томография" - диагностический неинвазивный метод с использованием радиофармпрепаратов, меченных ультракороткоживущими позитрон-излучающими изотопами для получения томографических изображений органов на молекулярном уровне;

"протонная лучевая терапия" - терапия, использующая для облучения опухолей ускоренные пучки протонов;

"ПЭТ-сканер" - специализированный томограф для визуализации изображений распределения в организме пациента радиофармпрепаратов, меченных позитрон-излучающими радионуклидами;

"радиационная медицина" - научное и практическое применение диагностических исследований и лечебных воздействий при острой и хронической лучевой болезни, локальных и общих лучевых повреждениях, стохастических радиационно-индуцированных поражениях;

"радиофармацевтический препарат" - химическое соединение, в молекуле которого содержится определенный радионуклид, используемый для диагностики или радиотерапии;

"терапия тяжелыми ионами" - лучевая терапия, использующая для лечения ионы тяжелее протонов;

"ускорители заряженных частиц" - физические установки для получения быстрых заряженных частиц высоких энергий - электронов, протонов, ионов и атомных ядер;

"ядерная медицина" - раздел медицинской радиологии, связанный с применением при оказании медицинской помощи открытых источников ионизирующих излучений (радионуклидов и радиофармпрепаратов на их основе) в лучевой терапии и в лучевой диагностике.

II. Состояние развития синхротронных и нейтронных исследований и разработок в Российской Федерации


Конкурентоспособность российской науки является определяющим фактором обеспечения безопасности и технологической независимости России. Лидерство в глобальной гонке за новыми знаниями и технологиями, в том числе необходимыми для ответа на большие вызовы, определенные Стратегией научно-технологического развития Российской Федерации, утвержденной Указом Президента Российской Федерации от 1 декабря 2016 г. N 642 "О Стратегии научно-технологического развития Российской Федерации" (далее - Стратегия), невозможно без современной исследовательской инфраструктуры, ключевым элементом которой являются уникальные научные установки класса "мегасайенс".

Важнейшей составляющей исследовательской инфраструктуры, включающей уникальные научные установки класса "мегасайенс", с точки зрения научно-технологического развития страны являются источники синхротронного и нейтронного излучения.

Методы исследования, основанные на использовании синхротронного и нейтронного излучений, становясь сегодня основным неразрушающим инструментом для получения уникальных данных о структуре и свойствах веществ на уровне отдельных атомов, находят применение при проведении фундаментальных исследований и разработке передовых технологий для всех отраслей экономики - от материаловедения и структурной химии до наук о жизни, медицинских, био- и природоподобных технологий. Проведение исследований с использованием современных синхротронных и нейтронных источников является неотъемлемой частью технологических процессов, в первую очередь в области метрологии и наноиндустрии.

Исследования атомарной структуры объектов живой природы позволят создать на основе полученных знаний принципиально новые технологии, копирующие принципы функционирования природных систем. Именно такие технологии должны лечь в основу новой технологической базы экономики страны. Использование такого подхода позволит создать революционные, прорывные технологии в медицине, фармакологии, сельском хозяйстве, микробиологической и пищевой промышленности, энергетике, IT-области.

В мировой медицинской практике лечения онкологических заболеваний в последние десятилетия широкое развитие получили методы адронной лучевой терапии с использованием ускоренных пучков адронов. Ежегодно только в России фиксируется около 600 тысяч онкологических заболеваний и, как минимум, в 10 процентах случаев заболевшим показана адронная лучевая терапия.

Также методы лучевой диагностики и лучевой терапии все чаще используются при оказании медицинской помощи при болезнях глаза и его придаточного аппарата, болезнях системы кровообращения, болезнях нервной системы и ряде иных заболеваний (рак мозга, онкогематологические заболевания, онкоофтальмология (базалиома, меланомы сосудистой оболочки).

Необходимость в повышении эффективности диагностики и терапии широкого круга заболеваний требует использования для этих целей самых современных методов, включая методы, основанные на использовании радиоактивных изотопов. Последние десятилетия отмечены интенсивным использованием методов ядерной физики в современной медицине, что вызвало развитие нового направления - ядерной медицины, уникальность методов которой состоит в том, что они позволяют диагностировать функциональные отклонения жизнедеятельности органов на самых ранних стадиях болезни, когда еще не проявляются симптомы заболевания. Благодаря развитию новейших синхронных и нейтронных исследований арсенал ядерных технологий в медицине в будущем нельзя представить без применения методов лучевой терапии с использованием ускорительных технологий.

Развитие существующих производственных технологий и создание на их основе конкурентоспособных высокотехнологичных производств в таких отраслях экономики, как электроника, химическая, фармацевтическая и аэрокосмическая промышленность, машиностроение, судостроение, эффективная добыча и глубокая переработка полезных ископаемых, ядерная энергетика, ядерная медицина и других, требуют получения при проведении синхротронных и нейтронных исследований (разработок) серьезных научных и научно-технических результатов. Современные технологии требуют увеличения точности контроля качества ключевых узлов и деталей создаваемой продукции, совершенствования технологических процессов, что может быть обеспечено только с применением синхротронного и нейтронного излучения, составляющих сегодня метрологическую основу развития науки. С использованием методов, основанных на использовании синхротронного и нейтронного излучения, стало возможно с атомарной точностью определять структуру и состав изготавливаемых деталей, совершенствовать химический состав и свойства материалов, реагентов, катализаторов, смазок, топлив.

Значимым фактором для формирования фундаментального задела в области разработки технологий, основанных на использовании свойств живых систем, органических и гибридных материалов, и для контроля качества и развития существующих промышленных технологий является возможность изучения динамики процессов с минимальным временным разрешением. Наблюдение динамики физических, химических или биологических процессов открывает возможность для их воспроизводства и управления ими с целью достижения необходимого результата. Знания о механизмах и причинах процессов позволят конструировать системы и материалы с контролируемыми параметрами.

Спектр возможных применений синхротронного и нейтронного излучения необычайно широк и постоянно увеличивается в связи с тем, что совершенствуются источники синхротронного и нейтронного излучения (увеличивается яркость генерируемого пучка, степень пространственной и временной когерентности, диапазон доступных энергий), развиваются методы и подходы, позволяющие исследовать новые объекты и получать уникальную, ранее недоступную информацию.

В настоящее время в мире насчитывается около 70 источников синхротронного излучения, из них около 17 - наиболее современные источники синхротронного излучения 3 поколения (Соединенные Штаты Америки - 5 источников, Германия - 4 источника, Великобритания и Франция - по 2 источника, Италия, Испания, Швейцария и Япония - по 1 источнику). Каждый год учеными из различных стран мира выполняется на них более 20 тысяч экспериментов. Среди таких источников в настоящее время лидирующие позиции по количеству используемых исследовательских методик, заявок пользователей, уровню полученных результатов и публикаций занимают источники синхротронного излучения 3-го поколения на основе ускорителей электронов - PETRA III (Германия), ESRP (Франция), Spring-8 (Япония) и APS (Соединенные Штаты Америки).

В нескольких странах мира (Германия, Франция, Соединенные Штаты Америки, Швеция, Япония) ведется активная работа по созданию источников синхротронного излучения 4-го поколения. Принципиальное отличие и преимущество источников синхротронного излучения 4-го поколения - это генерация излучения, обладающего полной пространственной когерентностью. Комплементарное использование синхротронных источников и лазера на свободных электронах позволит изучать динамику процессов, происходящих в веществах и материалах, одновременно с атомарным пространственным и фемто-секундным временным разрешениями.

При международной кооперации с участием Российской Федерации успешно реализовано 2 проекта по созданию наиболее современных источников рентгеновского излучения. На Европейском рентгеновском лазере на свободных электронах (г.Гамбург, Германия) уже получены результаты первых экспериментов, модернизация источника синхротронного излучения Европейского центра синхротронного излучения (г.Гренобль, Франция) до 4-го поколения вышла на финальную стадию и будет завершена в 2020 году.

В Российской Федерации синхротронные исследования в настоящее время проводятся на нескольких источниках синхротронного излучения - Курчатовском специализированном источнике синхротронного излучения "КИСИ-Курчатов" (г.Москва), в Сибирском центре синхротронного и терагерцового излучения на базе федерального государственного бюджетного учреждения науки Института ядерной физики им.Г.И.Будкера Сибирского отделения Российской академии наук (г.Новосибирск).

В 2009 году была завершена модернизация Курчатовского специализированного источника синхротронного излучения "КИСИ-Курчатов" (г.Москва), затронувшая здание ускорителя, основные системы ускорителя, экспериментальный зал, экспериментальные станции. В результате модернизации Курчатовский специализированный источник синхротронного излучения "КИСИ-Курчатов" по своей конфигурации и параметрам генерируемого излучения относится к поколению 2+. На нем работают 15 экспериментальных станций, еще 5 находятся на стадии строительства.

В 2018 году открыт лазерно-синхротронный комплекс, позволяющий проводить эксперименты с одновременным использованием излучений петаваттного фемтосекундного лазера и Курчатовского специализированного источника синхротронного излучения "КИСИ-Курчатов", что дает возможность реализовать исследование различных процессов с временным разрешением.

На сегодняшний день на Курчатовском специализированном источнике синхротронного излучения "КИСИ-Курчатов" проводят исследования, направленные на решение таких задач, как разработка принципиально новых материалов, способов конструирования и создания объектов техники и технологий, гибридных, биоподобных и искусственных биологических материалов, структур и систем, новых биомедицинских и генетических технологий, проведение исследований и разработок в области социогуманитарных технологий, включая исследования исторических материалов и объектов культурного наследия.

Курчатовский специализированный источник синхротронного излучения "КИСИ-Курчатов" является составной частью европейской сети уникальных научных установок класса "мегасайенс", играет ключевую роль в проведении предварительных экспериментов, подготовке образцов и экспериментов для осуществления исследований российскими учеными на зарубежных источниках и является важным элементом международной системы проведения исследований с целью получения фундаментальных знаний о принципах функционирования природы.