Статус документа
Статус документа

ИТС 3-2019 Производство меди

     2.2 Энергетический менеджмент и энергоэффективность


Вопросы использования энергии при оценке НДТ в цветной металлургии в целом и при производстве меди в частности имеют существенное значение. Так, например, существенная доля в общем производстве меди обеспечивается за счет вторичных ресурсов. Поскольку удельные прямые выбросы плавильных заводов, перерабатывающих лом, в 4 раза ниже, чем выбросы плавильных заводов, работающих на первичном сырье, изготовление медных катодов из вторичных материалов исключает выбросы сотен тысяч тонн загрязняющих веществ и .

Основным методом повышения энергоэффективности является использование систем энергоменеджмента, описанных в международном стандарте ISO 50001 [10] или национальном стандарте ГОСТ Р ИСО 50001 [11].

Утилизация энергии и тепла широко применяется и при производстве меди. Пирометаллургические процессы обычно сопровождаются интенсивным выделением тепла, содержащегося, в частности, в отходящих газах. Поэтому для утилизации тепла используются регенеративные и рекуперативные горелки, теплообменники и котлы. Пар или электроэнергия могут вырабатываться на заводе как для собственного использования, так и для внешних потребителей, например для муниципальных систем отопления, и для подогрева материалов или газообразного топлива [12]. Технологии, применяемые для рекуперации тепла на различных объектах, могут существенно различаться. Их характеристики зависят от целого ряда факторов, таких как эксергетический КПД, возможные направления использования тепла и электроэнергии на промплощадке или рядом с ней, масштаба производства и способности газов или содержащихся в них компонентов откладываться или осаждаться в теплообменниках.

Ниже приведены примеры методов, которые могут быть использованы для применяемых технологических процессов производства меди [12].

Горячие газы, образующиеся при плавке или обжиге сульфидных руд, почти всегда проходят через паровые котлы. Получаемый пар может использоваться для производства электроэнергии или для отопления. Помимо генерации электроэнергии, пар используется в процессе сушки концентрата, а остаточное тепло используется для предварительного подогрева воздуха, поступающего для поддержания горения.

Другие пирометаллургические процессы также имеют ярко выраженный экзотермический характер, особенно при использовании дутья, обогащенного кислородом. Многие процессы используют избыток тепла, которое образуется на этапах плавки или конвертирования вторичных материалов без потребления дополнительного топлива. Например, отходящее тепло конвертера Пирса-Смита используется для плавки анодного лома. В этом случае лом используется для снижения температуры процесса, причем состав лома тщательно контролируется. Это позволяет избежать необходимости охлаждения конвертера другими способами на различных этапах технологического цикла. Добавка лома для охлаждения может применяться и во многих других типах конвертеров, а те, в которых этот метод пока не может быть реализован, должны быть реконструированы таким образом, чтобы обеспечить применение этого метода.

Использование в горелках обогащенного кислородом воздуха или кислорода сокращает потребление энергии за счет возможности автогенной плавки или полного сгорания углеродных материалов. Объемы отходящих газов существенно сокращаются, что позволяет применять вентиляторы меньших размеров и т.п.

Материал футеровки печи может также влиять на энергетический баланс плавки. Имеются данные о положительном эффекте применения легких огнеупорных материалов, снижающих теплопроводность и нагрев производственного помещения [13]. При этом необходимо сбалансировать получаемые от этого выгоды со сроком службы футеровки, инфильтрацией металлов в футеровку.

Раздельная сушка концентратов и сырья при низких температурах сокращает потребность в энергии. Это связано с объемом энергии, необходимой для перегрева пара в плавильной печи, и значительным увеличением общего объема газа при производстве пара. Больший объем газа увеличивает количество тепла, отводимого из печи, и, следовательно, размер вентилятора, необходимого для работы с увеличенным объемом газа. В некоторых случаях сушка может быть обусловлена необходимостью поддержания минимального уровня влажности для предотвращения выбросов пыли и (или) самовозгорания.

Производство серной кислоты из диоксида серы, образующегося на стадиях обжига и плавки, - экзотермический процесс, включающий несколько стадий охлаждения газа. Тепло, накапливаемое в газе при конвертировании, а также тепло, содержащееся в произведенной кислоте, может быть использовано для производства пара и (или) горячей воды.

Тепло утилизируется путем использования горячих газов со стадий плавки для предварительного подогрева шихты. Аналогичным образом топливный газ и подаваемый для поддержания горения воздух могут быть предварительно подогреты, или в печи может быть использована рекуперационная горелка. Термоэффективность в этих случаях повышается. Например, почти все шахтные печи для плавки катодов/медного лома используют природный газ; проектные параметры предполагают термоэффективность (эффективность использования топлива) от 58% до 60% в зависимости от диаметра и высоты печи. Потребление газа составляет примерно 330 кВт·ч на тонну металла. Эффективность шахтной печи высока, прежде всего благодаря подогреву шихты внутри печи. Отходящие газы могут содержать остаточное тепло, которое может быть использовано для подогрева воздуха и газа, подаваемых для поддержания горения. Устройство аппаратного обеспечения рекуперации тепла требует отвода отходящих печных газов через теплообменник подходящих размеров, вытяжной вентилятор и воздуховоды. Утилизируемое тепло составляет примерно от 4% до 6% потребляемого печью топлива.

Важным методом является охлаждение отходящих газов перед подачей в рукавный фильтр, поскольку оно обеспечивает температурную защиту фильтра и допускает более широкий выбор материалов для его изготовления. В некоторых случаях на этой стадии возможна утилизация тепла. Например, при типичной компоновке шахтной печи для плавки металла газы из верхней зоны печи отводятся на первый из двух теплообменников, производящих подогрев воздуха, используемого для поддержания горения. Температура газов после прохождения через этот теплообменник может составлять от 200°C до 450°C. Второй теплообменник уменьшает температуру газа перед подачей на рукавный фильтр до 130°C. После теплообменников обычно устанавливается циклон, который удаляет крупные частицы и служит искрогасителем.

Образующаяся в электрической или шахтной печи окись углерода улавливается и сжигается в качестве топлива в нескольких различных процессах или используется для производства пара, например для местного отопления, а также на другие энергетические нужды. CO может образовываться в существенных объемах, и можно привести целый ряд примеров, когда большая часть энергии, используемой установкой, производится на основе СО, улавливаемого в электродуговой печи. В других случаях CO, образующийся в электрической печи, в ней же и сжигается, обеспечивая часть тепла, необходимого для процесса плавки. Применимость этого метода может быть ограничена составом отходящих газов либо типом технологического процесса (например, периодическим его характером).

Значительную экономию энергии также обеспечивает вторичное использование загрязненных отходящих газов в кислородно-топливной горелке. Горелка использует остаточное тепло газа, энергию содержащихся в нем примесей и разрушает последние [14]. С помощью этого процесса можно также сократить выбросы оксидов азота.

Часто практикуется использование тепла газов или пара для увеличения температуры выщелачивающих растворов. В некоторых случаях часть газового потока может отводиться на скруббер для отдачи тепла в воду, которая затем используется для целей выщелачивания. Охлажденный газ затем возвращается в основной поток для дальнейшей очистки.

Во время переплавки электронного либо батарейного лома горючий пластик вносит свой вклад в энергию, которая используется в процессе плавки и сокращает объем необходимого ископаемого топлива.

Преимущества предварительного нагрева воздуха, подаваемого для поддержания горения, подтверждены многими документами. Если воздух подогревается на 400°C, рост температуры пламени составляет 200°C, а если предварительный подогрев составляет 500°C, температура пламени растет на 300°C. Такое увеличение температуры пламени обеспечивает более высокую эффективность плавки и сокращение потребления энергии. Имеются сведения о регенеративных горелках, подогревающих подаваемый воздух до 900°C, что сокращает потребление энергии на 70%. Этот метод хорошо освоен, и достигнутый срок окупаемости составляет менее одного года.

Альтернативой нагреву подаваемого для поддержания горения воздуха является подогрев шихты. Теоретически каждые 100°C предварительного нагрева обеспечивают 8% экономии энергии; практические данные свидетельствуют, что подогрев на 400°C ведет к экономии 25% энергии, в то время как подогрев на 500°C ведет к экономии 30% энергии.

Во многих обстоятельствах предварительная сушка сырья обеспечивает энергосбережение, потому что скрытое тепло, аккумулируемое в образующемся паре, не теряется, кроме того, уменьшается объем газов, следовательно, вентиляторы и газоочистки тоже могут быть меньшими по размеру и потреблять меньше энергии.

Отходящие газы анодных печей можно использовать при сушке и на других этапах технологического процесса. Горячие газы, улавливаемые над литейными желобами, могут использоваться для поддержания горения.

Вторичное использование тепла и энергии - несомненно, важный фактор для предприятий цветной металлургии, отражающий высокую долю энергозатрат в себестоимости. Многие методы вторичного использования энергии относительно легки для применения при модернизации существующих производств [12], однако иногда могут возникать проблемы, связанные с отложением металлов в теплообменниках. Поэтому в основе качественного проектирования должны лежать достоверные знания о выбрасываемых компонентах и их поведении при различных температурах. Для поддержания высокой термоэффективности также используются системы очистки теплообменников.

Поскольку эти методы экономии являются примерами экономии на отдельных компонентах установок, их применение и экономическая эффективность зависят от специфических условий конкретной промышленной площадки и технологического процесса.