Действующий

Об утверждении Правил проведения исследований биологических лекарственных средств Евразийского экономического союза (с изменениями на 4 июля 2023 года)

5. Дизайн валидационных исследований

5.1. Валидационные исследования предполагают намеренное добавление вирусов на различных этапах производства и измерение степени его элиминации (инактивации) в ходе последующего специального этапа или этапов производства. Необязательно валидировать каждый отдельный этап процесса производства. Предметом валидационного исследования необходимо сделать лишь те этапы, которые, вероятнее всего, вносят вклад в инактивацию (элиминацию) вируса.

5.2. Правила производственной практики не допускают намеренное привнесение какого-либо вируса в производственные технологические линии. В связи с этим валидацию необходимо проводить на отдельном лабораторном оборудовании, предназначенном для вирусологической работы, на разукрупненной (уменьшенной) версии технологической линии, ей должен заниматься персонал, обладающий опытом работы по вирусологии и промышленной биоинженерии. Исследования необходимо проводить в соответствии с Правилами надлежащей лабораторной практики Евразийского экономического союза в сфере обращения лекарственных средств, утвержденными Решением Совета Евразийской экономической комиссии от 3 ноября 2016 г. N 81 (далее - Правила лабораторной практики).

(Пункт в редакции, введенной в действие с 31 января 2023 года решением Совета ЕЭК от 15 июля 2022 года N 110. - См. предыдущую редакцию)

5.3. В целях оценки вирусной безопасности препарата обязательным условием приемки результатов, полученных на разукрупненной системе, является сопоставимость модельных и полномасштабных процедур. В связи с этим необходимо путем сравнения таких параметров процесса, как pH, температура, концентрация белка и других компонентов, время реакции, высота колонки (column bed height), линейная скорость потока, отношение скорости потока к высоте (bed height), профиль элюирования и эффективность этапа (например, выход, баланс, специфическая активность, состав), подтвердить валидность разукрупнения. Необходимо проанализировать неизбежные отклонения с точки зрения их потенциального влияния на результаты.

5.4. По возможности необходимо показать, за счет какого процесса достигается снижение вирусной инфекционности (инактивации вируса или элиминации вирусных частиц). Этого можно достичь посредством определения кинетики снижения и (или) баланса вирусной нагрузки, исходя из обстоятельств. Процесс, снижающий вирусную инфекционность, потенциально легче поддается моделированию, чем процессы, обеспечивающие элиминацию частиц. Необходимо изучить кинетику инактивации этапа инактивации вирусов и описать ее в отчетах в табличном и графическом формате. Если слишком быстрая инактивация не позволяет отразить кинетику вирусной нагрузки с помощью описания и регистрации условий процесса, необходимо провести дополнительные исследования, чтобы доказать, что инфекционность действительно снижается за счет инактивации. Таким образом, необходимо внедрить надлежащие контроли, направленные на обнаружение возможного искажающего влияния образца или матрицы, в которую привнесен вирус, на методику количественного определения с установлением пределов обнаружения.

5.5. Необходимо изучить производственные параметры, влияющие на эффективность инактивации (элиминации) вирусов с помощью данного этапа производства, и привести результаты, использованные для установления надлежащих внутрипроизводственных пределов содержания вирусной нагрузки. К критическим параметрам относятся:

такие механические параметры, как скорость потока, скорость перемешивания, размеры колонок, повторное использование колонок и т.д.;

такие физико-химические параметры, как содержание белка, pH, температура, содержание влаги и т.д.

5.6. Антитела, содержащиеся в исходном материале, могут влиять на поведение вируса на этапах разделения и инактивации. В валидационных исследованиях необходимо учесть данное обстоятельство.

5.7. Валидность достигаемого лог-снижения вирусной нагрузки определяется влиянием вариации критических параметров процесса, использованных для установления внутрипроизводственных пределов.

5.8. Опубликованные работы по способности схожих или таких же процессов инактивировать (элиминировать) вирусы могут позволить выявить наиболее эффективные этапы. Однако присущая валидационным исследованиям и обусловленная необходимостью моделирования процесса, выбора используемых вирусов и определения параметров полномасштабного производства в лабораторном масштабе вариабельность означает, что данные о валидации должны основываться на экспериментальных исследованиях, представленных самим заявителем.

5.9. Количество добавляемого в исходный материал вируса на производственном этапе, подлежащем изучению, должно быть как можно большим, чтобы определить способность производственного этапа должным образом инактивировать (элиминировать) вирусы. Однако количество добавляемого вируса не должно существенно нарушать состав производимого материала (количество добавляемого вируса обычно составляет менее 10%). По возможности вычисленные факторы снижения вирусной нагрузки должны основываться на количестве вируса, которое можно обнаружить в исходном материале после добавления к нему вируса, а не на количестве исходного добавленного в материал вируса.

5.10. По возможности вирус из образцов, взятых из модельных экспериментов, следует титровать без дальнейших манипуляций, таких как ультрафильтрация. Если дальнейшая обработка неизбежна (например, удаление ингибиторов или токсических веществ) или предполагается хранение, направленное на обеспечение одновременного титрования всех образцов, необходимо включить надлежащие контроли с целью определения, какое влияние оказывают эти процедуры на результат исследования. Влияние образца на систему обнаружения, включая токсические эффекты, необходимо документировать, поскольку образцы влияют на пределы обнаружения.

5.11. Количественное определение инфекционности необходимо проводить в соответствии с принципами, определенными правилами надлежащей лабораторной практики Союза, утверждаемыми Комиссией, они могут включать бляшкообразование, обнаружение других цитопатических эффектов, таких как образование синцития или очагов, титрование по конечным точкам (например, методики определения TCID50), обнаружение синтеза вирусных антигенов и другие методы. С целью обеспечения надлежащей статистической правильности результата метод должен обладать достаточной чувствительностью и воспроизводимостью и проводиться с достаточным количеством повторов и контролями в соответствии с приложением N 1 к настоящей главе.

5.12. Методы амплификации нуклеиновых кислот (например, ПЦР) являются подходом, обладающим большой чувствительностью для выявления вирусных геномов, они способны обнаруживать такие вирусы, как гепатит B и C, которые не растут на культурах клеток. Однако важным ограничением этой технологии является обнаружение инактивированного вируса в методике амплификации генома, что может занижать степень вирусной инактивации, достигнутой с помощью потенциально эффективного процесса. ПЦР обладает высокой чувствительностью в исследованиях процессов, зависящих от элиминации вирусов. Основными затруднениями при использовании этой технологии являются квантификация, стандартизация, контроль качества и интерпретация результатов. Необходимо однозначно валидировать и стандартизировать методики ПЦР перед внедрением их в процесс валидации, необходимо проявлять предельную осторожность при интерпретации как положительных, так и отрицательных результатов.

5.13. Необходимо обеспечить надлежащее уничтожение любого вируса, который потенциально мог задержаться в системе, перед повторным использованием данной системы (например, путем очистки колонок и т.д.).