Статус документа
Статус документа

ГОСТ Р ИСО 29463-4-2024

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВЫСОКОЭФФЕКТИВНЫЕ ФИЛЬТРЫ И ФИЛЬТРУЮЩИЕ МАТЕРИАЛЫ ДЛЯ УДАЛЕНИЯ ЧАСТИЦ ИЗ ВОЗДУХА

Часть 4

Метод испытаний фильтрующих элементов на утечку (метод сканирования)

High-efficiency filters and filter media for removing particles in air. Part 4. Test method for determining leakage of filter elements - scan method



ОКС 91.140.30

Дата введения 2025-01-01

Предисловие

     

1 ПОДГОТОВЛЕН Общероссийской общественной организацией "Ассоциация инженеров по контролю микрозагрязнений" (АСИНКОМ) на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 184 "Обеспечение промышленной чистоты"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 мая 2024 г. № 607-ст

4 Настоящий стандарт идентичен международному стандарту ИСО 29463-4:2011* "Высокоэффективные фильтры и фильтрующие среды для удаления частиц из воздуха. Часть 4. Метод испытаний фильтрующих элементов на утечку (метод сканирования)" (ISO 29463-4:2011 "High-efficiency filters and filter media for removing particles in air - Part 4: Test method for determining leakage of filter elements - scan method", IDT).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

Международный стандарт разработан Техническим комитетом ТК 142 "Оборудование для очистки воздуха и других газов" Международной организации по стандартизации (ИСО).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные и межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА.

Дополнительные примечания в тексте стандарта, выделенные курсивом, приведены для пояснения текста оригинала

5 ВЗАМЕН ГОСТ Р ЕН 1822-4-2012

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.rst.gov.ru)

Введение


Стандарты ИСО 29463 (все части) получены из стандартов ЕН 1822 (все части) с рядом изменений, отражающих позицию стран, не входящих в ЕС. Они содержат требования, фундаментальные принципы испытаний и маркировки для высокоэффективных фильтров очистки воздуха от частиц с эффективностью от 95% до 99,999995%, которые могут использоваться для классификации фильтров в целом, либо по соглашению между поставщиком и пользователем.

Стандарты ИСО 29463 (все части) предусматривают оценку эффективности всех фильтров на основе счета частиц с использованием жидких или (как альтернатива) твердых контрольных аэрозолей, что позволяет выполнять стандартную классификацию фильтров как по интегральной, так и по локальной эффективности, что обычно покрывает большинство требований в различных областях применения. Отличие ИСО 29463 (все части) от других национальных стандартов заключается в методах определения интегральной эффективности. Вместо оценки эффективности по массовой концентрации или общих концентраций эти методы основаны на счете частиц в точке с наибольшим проскоком (MPPS - Most Particle Penetrating Size), которая для микростекловолокнистых фильтров составляет примерно от 0,12 до 0,25 мкм. Этот метод также позволяет испытывать сверхвысокоэффективные фильтры очистки воздуха со сверхнизким проскоком, что не достигалось при использовании прежних методов контроля из-за их недостаточной чувствительности. Для мембранных фильтров действует другое правило (см. ИСО 29463-5, приложение B). Несмотря на то, что не приводятся эквивалентные методы испытаний заряженных фильтров, порядок обращения с этими фильтрами приведен в ИСО 29463-5, приложение C. Специальные требования к методам испытаний, их периодичности и ведению протоколов могут быть согласованы между поставщиком и заказчиком. Для фильтров с меньшей эффективностью (группа H) могут применяться альтернативные методы испытаний по настоящему стандарту, приложение A, с заключением специального соглашения между поставщиком и заказчиком и только при условии указания на это в маркировке фильтра согласно настоящему стандарту, приложение A.

Отличием стандартов ИСО 29463 (все части) от других методов является, например, то, что другие методы основаны на определении общей концентрации аэрозольных частиц, а не индивидуальных частиц. Краткое описание этих методов со ссылками на соответствующие стандарты дано в ИСО 29463-5, приложение A.

Примечание - В Российской Федерации действует с 1990-х годов классификация высокоэффективных фильтров очистки воздуха EPA, HEPA и ULPA (E10-E12; H13; H14; U15-U17), так же как и в Евросоюзе.

ИСО 29463-1 устанавливает отличающуюся от этого классификацию фильтров, что не принято ни в Европе, ни в России. В связи с этим в Европе принят стандарт ЕН 1822-1:2019, идентичный перевод которого введен в России в качестве ГОСТ Р 71176-2023. Это обеспечивает удобство в работе и единое понимание производителей фильтров, монтажных организаций, испытателей и пользователей.

Область применения ИСО 29463-2, ИСО 29463-3, ИСО 29463-4 и ИСО 29463-5 ограничена преимущественно испытаниями фильтров их производителями.

В связи с этим в настоящем стандарте сохранены обозначения фильтров в соответствии с оригиналами. Таблица сопоставления обозначений приведена в ГОСТ Р 71176-2023.

     1 Область применения

Настоящий стандарт устанавливает метод контроля фильтров путем сканирования, рассматриваемый как базовый (контрольный) метод определения утечек (проскока) в фильтрующих элементах. Метод распространяется на фильтры классов от ИСО 35 H до ИСО 75 U. В стандарте также приведено описание других нормативных методов: метода испытаний "на масляную струйку" (приложение A), метода с использованием фотометра аэрозолей (приложение B), который может применяться для HEPA-фильтров классов от ИСО 35 H до ИСО 45 HEPA-фильтров и метода проверки на утечку с помощью полистирольных частиц (приложение E). Стандарт предназначен для применения совместно с ИСО 29463-1, ИСО 29463-2, ИСО 29463-3 и ИСО 29463-5.

     2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты [для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных - последнее издание (включая все изменения)]:

ISO 5167-1, Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full - Part 1: General principles and requirements (Измерение расхода текучей среды с помощью сужающих устройств, установленных в полностью заполненных трубопроводах круглого сечения. Часть 1. Общие принципы и требования)

ISO 29463-1:2011*, High-efficiency filters and filter media for removing particles in air - Part 1: Classification, performance testing and marking (Высокоэффективные фильтры очистки воздуха и фильтрующие материалы для удаления частиц из воздуха. Часть 1. Классификация, испытания рабочих характеристик и маркировка)

________________

* Заменен на ISO 29463-1:2017. Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

ISO 29463-2:2011, High efficiency filters and filter media for removing particles in air - Part 2: Aerosol production, measuring equipment, particle counting statistics (Высокоэффективные фильтры очистки воздуха и фильтрующие материалы для удаления частиц из воздуха. Часть 2. Получение аэрозолей, испытательное оборудование, статистика счета частиц)

ISO 29463-3:2011, High efficiency filters and filter media for removing particles in air - Part 3: Testing flat sheet filter media (Высокоэффективные фильтры очистки воздуха и фильтрующие материалы для удаления частиц из воздуха. Часть 3. Испытания плоского фильтрующего материала)

ISO 29463-5:2011*, High efficiency filters and filter media for removing particles in air - Part 5: Test method for filter element (Высокоэффективные фильтры очистки воздуха и фильтрующие материалы для удаления частиц из воздуха. Часть 5. Методы испытаний фильтрующих элементов)

________________

* Заменен на ISO 29463-5:2022. Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

ISO 29464, Cleaning of air and other gases - Terminology (Очистка воздуха и других газов. Терминология)

     3 Термины и определения

В настоящем стандарте применены термины и определения, приведенные в ИСО 29463-2, ИСО 29463-3, ИСО 29463-5, ИСО 29464, а также следующие термины с соответствующими определениями:

3.1 время отбора пробы (sampling duration): Время, в течение которого ведется счет частиц в пробе до фильтра и после фильтра.

3.2 метод общего счета частиц (total particle counting method): Метод счета частиц, который позволяет определять число частиц в пробе некоторого объема без разделения по размерам частиц.

Пример - С использованием счетчика ядер конденсации.

3.3 метод счета частиц и оценки их размеров (particle counting and sizing method): Метод счета частиц, который позволяет определять число частиц, классифицировать частицы по размерам, например, с использованием оптического счетчика частиц.

Пример - С использованием счетчика частиц.

3.4 интенсивность потока частиц (particle flow rate): Число частиц, которое посчитано или пересекло заданную поперечную секцию в единицу времени.

3.5 распределение потока частиц (particle flow distribution): Распределение потока частиц в плоскости, перпендикулярной направлению потока.

3.6 фотометр аэрозолей (aerosol photometer): Прибор, определяющий массовую концентрацию частиц в воздухе на основе рассеяния света, в котором для измерений используется оптическая камера прямого рассеивания света.

     4 Принцип работы

Для большинства областей применения высокоэффективных фильтров важную роль играют фильтры, не имеющие утечек. Базовый метод контроля на утечку в фильтрующих элементах предназначен для проверки и установления превышения допустимых уровней (ИСО 29463-1). Для фильтров группы H могут применяться методы, альтернативные методу сканирования и обеспечивающие эквивалентный контроль на утечку (приложения A, B, E и F). Несмотря на то, что метод счета полистирольных частиц размерами от 0,3 до 0,5 мкм по приложению F не является эквивалентным, он может использоваться вместо метода контроля на струйку аэрозоля (приложение A).

Для контроля на проскок фильтр устанавливают в камеру и на него подается контрольный поток воздуха с номинальной скоростью. После измерения перепада давления при номинальной скорости потока воздуха фильтр продувается, и контрольный аэрозоль от генератора аэрозолей смешивается с подготовленным контрольным воздухом в воздуховоде смешивания так, чтобы аэрозоль был распределен равномерно в поперечной секции воздуховода. Концентрация частиц после контролируемого фильтра меньше, чем концентрация частиц перед фильтром, и равна ее произведению на коэффициент проскока.

Неоднородности материала фильтра или утечки приводят к изменениям в концентрации частиц по лицевой поверхности фильтра. Кроме того, утечки в пограничных зонах и внутри элементов фильтра (герметизация фильтра в раме, герметизация камеры фильтра) могут приводить к локальному увеличению концентрации частиц после фильтра.

При контроле на проскок следует определять распределение концентрации частиц после фильтра, чтобы обнаружить точки с превышением предельных значений концентрации. Координаты точек проскока следует регистрировать.

Следует также сканировать раму фильтра, углы, места герметизации между рамой фильтра и уплотнителем так, чтобы обнаружить возможные утечки в этих зонах. Рекомендуется, чтобы при сканировании фильтров использовался уплотнитель, предусмотренный конструкцией фильтра; фильтр располагался в том же положении; скорость потока воздуха была та же, что и на месте эксплуатации.

Для определения распределения частиц после фильтра пробоотборник должен иметь определенную форму, чтобы отбирать заданную часть потока воздуха. Проба воздуха должна быть направлена в счетчик частиц, который считает частицы и выводит результаты как функцию от времени. При проведении теста пробоотборник должен перемещаться с определенной скоростью вблизи поверхности фильтра, из которой выходит воздух так, чтобы проверенные зоны пересекались или граничили друг с другом без зазоров (см. C.3.2 и C.3.3). Время контроля концентрации частиц после фильтра может быть сокращено за счет использования нескольких средств контроля (экстракторов части потока, счетчиков частиц), работающих параллельно.

Для локализации мест проскока нужно определять координаты места нахождения пробоотборника, скорость движения пробоотборника и концентрацию частиц через достаточно короткие интервалы времени. При обнаружении локального проскока дальнейшие измерения проводят при неподвижном пробоотборнике, располагаемом в зоне проскока.

Контроль на проскок следует выполнять для частиц размерами, равными точке MPPS - точке с максимальным проскоком частиц (см. ЕН 1822-3), за исключением мембранных фильтров по приложению E настоящего стандарта. Распределение размеров аэрозольных частиц может быть определено с использованием системы анализа размеров частиц, например, анализатора размеров частиц по дифференциальной подвижности.

Испытания на проскок могут быть выполнены с использованием монодисперсного и полидисперсного аэрозолей. Средний диаметр частиц должен соответствовать диаметру частиц в точке MPPS, в которой эффективность фильтровального материала минимальна. Для монодисперсного аэрозоля может быть использован метод общего счета частиц с помощью счетчика ядер конденсации или оптического счетчика частиц, например лазерного счетчика частиц.

При применении полидисперсного аэрозоля следует использовать оптический счетчик частиц, который считает частицы в зависимости от их размеров.

     5 Контролируемый фильтр

Фильтр, подлежащий контролю на проскок, не должен иметь видимых повреждений или других неоднородностей и должен удовлетворять требованиям к установке, герметизации и подаче потока воздуха. Температура фильтра при проведении испытаний должна быть равна температуре контрольного воздуха. При обращении с фильтром следует соблюдать меры предосторожности, фильтр должен быть надежно и ясно маркирован с указанием:

a) обозначения фильтрующего элемента;

b) стороны фильтрующего элемента, на которую подается воздух.

     6 Контрольный стенд

     6.1 Схема стенда

Стенд может быть использован для испытаний с монодисперсным или полидисперсным аэрозолем (рисунок 1). Различие в методах этих испытаний состоит в способе контроля частиц и генерировании аэрозоля.

1 - предфильтр контролируемого воздуха; 2 - вентилятор с регулятором скорости; 3 - подогреватель воздуха; 4 - ввод аэрозоля в воздуховод; 5 - генератор аэрозоля с подготовкой приточного воздуха и регулятором потока воздуха; 6 - датчики атмосферного давления, температуры и относительной влажности; 7 - секция смешивания воздуха до фильтра; 8 - точка отбора проб для счета частиц до фильтра; 9 - система разбавления (опция); 10 - счетчик частиц до фильтра; 11 - защитный поток воздуха (опция); 12 - контролируемый фильтр; 13 - точка отбора проб и частичного удаления воздуха после фильтра; 14 - регулируемое устройство для установки пробоотборника; 15 - датчик скорости потока; 16 - счетчик частиц после фильтра; 17 - компьютер для обработки и хранения данных; 18 - система контроля тестируемого аэрозоля; 19 - датчик перепада давления воздуха

Доступ к полной версии документа ограничен
Этот документ или информация о нем доступны в системах «Техэксперт» и «Кодекс».
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте «Техэксперт: Базовые нормативные документы» бесплатно
Реклама. Рекламодатель: Акционерное общество "Информационная компания "Кодекс". 2VtzqvQZoVs