РУКОВОДСТВО ПО БЕЗОПАСНОСТИ "МЕТОДИКА ОЦЕНКИ ПОСЛЕДСТВИЙ АВАРИЙНЫХ ВЗРЫВОВ ТОПЛИВНО-ВОЗДУШНЫХ СМЕСЕЙ"
1. Руководство по безопасности "Методика оценки последствий аварийных взрывов топливно-воздушных смесей" (далее - Руководство) разработано в целях содействия соблюдению требований Федеральных норм и правил в области промышленной безопасности "Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств", утвержденных приказом Ростехнадзора от 15 декабря 2020 г. N 533 (зарегистрирован Минюстом России 25 декабря 2020 г., регистрационный N 61808), и требований Федеральных норм и правил в области промышленной безопасности "Общие требования к обоснованию безопасности опасного производственного объекта", утвержденных приказом Ростехнадзора от 15 июля 2013 г. N 306 (зарегистрирован Минюстом России 20 августа 2013 г., регистрационный N 29581).
2. Руководство содержит рекомендации к оценке параметров воздушных ударных волн при взрывах топливно-воздушных смесей (далее - ТВС), образующихся в атмосфере при промышленных авариях, для обеспечения требований промышленной безопасности при проектировании, строительстве, капитальном ремонте, техническом перевооружении, реконструкции, эксплуатации, консервации и ликвидации опасных производственных объектов и не является нормативным правовым актом. Руководство содержит рекомендации по определению вероятных степеней поражения людей и степени повреждений зданий от взрывной нагрузки при авариях со взрывами облаков топливно-воздушных смесей на опасных производственных объектах.
3. Организации, осуществляющие оценку последствий аварий со взрывом топливно-воздушных смесей на опасных производственных объектах, могут использовать иные обоснованные способы и методы, чем те, которые указаны в Руководстве. В частности, подтвержденные практикой достоверные методы вычислительной газодинамики, в том числе методы моделирования горения и детонации, а также распространения волн давления в трехмерной постановке.
4. В Руководстве используются сокращения, обозначения, а также термины и определения, приведенные в приложениях N 1 и 2.
5. Для количественной оценки параметров воздушных ударных волн при взрывах ТВС рекомендуется рассматривать частичную разгерметизацию и полное разрушение оборудования, содержащего горючее вещество в газообразной или жидкой фазе, выброс этого вещества в окружающую среду, образование и дрейф облаков ТВС, формирование капельных включений в облако, инициирование ТВС, взрывное превращение (горение или детонация) в облаках ТВС, распространение воздушных волн в окружающем пространстве.
6. Параметры выброса горючего вещества в окружающую среду определяются с учетом специфики аварийного оборудования на основе методик, изложенных в руководствах по безопасности Ростехнадзора.
7. Характеристики образования и пространственно-временные поля концентрации горючих веществ при дрейфе облаков ТВС определяются с использованием методик, изложенных в Руководстве по безопасности "Методика моделирования распространения аварийных выбросов опасных веществ", утвержденном приказом Ростехнадзора от 2 ноября 2022 г. N 385 (далее - "Методика моделирования распространения аварийных выбросов опасных веществ"), Руководстве по безопасности "Методика оценки последствий аварий на взрывопожароопасных химических производствах", утвержденном приказом Ростехнадзора от 28 ноября 2022 г. N 415 (далее - "Методика оценки последствий аварий на взрывопожароопасных химических производствах").
В результате моделирования определяется зона возможного воспламенения облаков ТВС как область с концентрацией горючего не менее нижнего концентрационного предела распространения пламени (далее - НКЛР), а зона появления открытого пламени - как область с концентрацией не менее 0,5*НКПР.
8. Моделирование процессов инициирования облака ТВС, взрывного превращения (горение или детонация) в облаке ТВС, распространения воздушных волн в окружающем пространстве рекомендуется выполнять с использованием следующих подходов:
A. Численное моделирование с использованием методов вычислительной гидродинамики согласно рекомендациям Руководства по безопасности "Методика оценки последствий аварий на взрывопожароопасных химических производствах" в трехмерной постановке;
B. Параметрические модели взрыва ТВС (раздел III);
C. Одномерные газодинамические модели взрыва ТВС (раздел IV).
9. В качестве исходных данных для выполнения расчета с использованием методов вычислительной гидродинамики в трехмерной постановке выступают: трехмерная модель окружающего пространства, параметры механического движения ТВС (в частности уровень турбулентности), пространственно-временные поля концентраций горючего, определенные на стадии моделирования образования и дрейфа облаков ТВС, параметры источников зажигания облака (облаков) ТВС.
10. Рекомендуется геометрические характеристики окружающего пространства разделять на виды в соответствии со степенью его загроможденности в связи с тем, что характер окружающего пространства (его ограниченность и загроможденность) в значительной степени определяет скорость взрывного превращения облака ТВС:
Вид 1. Наличие длинных труб, полостей, каверн, заполненных горючей смесью, при сгорании которой возможно формирование турбулентных струй продуктов сгорания с размером не менее трех размеров детонационной ячейки для данной смеси. Если размер детонационной ячейки для данной смеси неизвестен, то минимальный характерный размер турбулентных струй рекомендуется принимать равным 5 см для веществ класса 1; 20 см - для веществ класса 2; 50 см - для веществ класса 3 и 150 см - для веществ класса 4.
Вид 2. Сильно загроможденное пространство: наличие полузамкнутых объемов, высокая плотность размещения технологического оборудования, лес, большое количество повторяющихся препятствий.
Вид 3. Средне загроможденное пространство: отдельно стоящие технологические установки, резервуарный парк.
Вид 4. Слабо загроможденное и свободное пространство.
11. При моделировании сгорания облаков ТВС, целиком находящихся в слабо загроможденном пространстве (вид 4), допускается рассматривать последствия в следующем порядке:
- смертельное поражение людей на открытом пространстве от воздействия волны давления не рассматривается;
- в качестве основного смертельного поражающего фактора для людей на открытом пространстве рассматривается тепловое воздействие в результате горения облаков ТВС;
- при этом несмертельное поражение людей на открытом пространстве от воздействия волны давления учитывается в спектре рассматриваемых уровней поражения;
- для учета взрывоустойчивости зданий и сооружений рассматривается барическое воздействие волн давления на здания и сооружения, в т.ч. для учета гибели и травмирования людей, находящихся в этих зданиях и сооружениях.
12. В зоне возможного воспламенения облака выделяются области видов 1-4. При отсутствии данных об источниках воспламенения облаков ТВС такие источники учитываются в центре каждой области загромождения. Взрыв ТВС моделируется от каждого источника воспламенения отдельно.
13. С целью расчета последствий взрыва допускается упрощенное представление распределения концентраций горючего в облаках ТВС внутри областей видов 1-4 как равномерно распределенного по области горючего в стехиометрической концентрации.
14. При отсутствии данных о вероятности появления источников воспламенения облаков ТВС допускается принимать их равновероятными.
Общие положения по применению параметрической модели
15. В образовании облака ТВС рекомендуется рассматривать горючее вещество одного вида, а для смеси нескольких горючих веществ характеристики ТВС, используемые при расчетах параметров ударных волн, определяются отдельно.
16. Для расчета параметров ударных волн при взрыве облака ТВС рекомендуется учитывать следующие исходные данные:
- характеристики горючего вещества, содержащегося в облаке ТВС;
- агрегатное состояние ТВС (газовое или гетерогенное);
- средняя концентрация горючего вещества в смеси ;
- стехиометрическая концентрация горючего газа с воздухом ;
- масса горючего вещества в облаке, участвующая в создании поражающих факторов взрыва, ;
- удельная теплота сгорания горючего вещества ;
- информация об окружающем пространстве (вид окружающего пространства, пункт 10).
17. При оценке последствий аварийных взрывов ТВС можно рассматривать (с определенным консерватизмом) облако в целом. Взрыв ТВС моделируется в момент времени, когда достигается максимальная масса горючего во взрывоопасных пределах во всем облаке. Центр взрыва в этом случае полагается в центре масс облаков ТВС, а загроможденность пространства определяется по наихудшему с точки зрения последствий взрыва ТВС виду загромождения в пределах зоны возможного воспламенения облаков ТВС.
18. В случае если в облаке реализуется не детонационный, а дефлаграционный режим энерговыделения, то для оценки последствий можно использовать более точный подход. Этот подход исходит из тех соображений, что при дефлаграционном горении с переменной скоростью за генерацию ударных волн отвечает дефлаграционное горение с наибольшей скоростью, последующее же сгорание облака с более низкой скоростью не вносит в уже сгенерированные волны давления существенного вклада. Это означает, что если в облаке существует область с высокой скоростью горения (в силу высокой загроможденности пространства) и граничащая с ней область с невысокой скоростью горения, то процесс будет развиваться следующим образом: при сгорании части облака с высокой скоростью генерируется волна давления, после же перехода горения в слабозагроможденную область пространства и сброса скорости горения генерация волны давления становится пренебрежимой по сравнению с предыдущей стадией горения. При этом однако надо учитывать возможность нового ускорения пламени, если оно вновь переходит в область с высокой загроможденностью, что может способствовать усилению волн давления. Таким образом, оценку последствий аварийных взрывов ТВС можно проводить, учитывая только сгорание объемов при высокой скорости дефлаграции. В этом случае для более точных оценок последствий аварийных взрывов ТВС можно использовать алгоритм расчета последствий аварийных взрывов ТВС, который включает следующие этапы:
18.1. Определение области возможных взрывов ТВС путем расчета зоны, в которой возможны появления концентрации не ниже НКПР, в заданных условиях аварии.
18.2. Определение ожидаемого режима взрывного превращения ТВС для каждой области загромождения. Если для какого-либо объема реализуется детонационный режим взрывного превращения, то при оценке последствий этот режим рассматривается как единственный для всего облака в целом.
18.3. Выделение в области возможных взрывов ТВС областей загроможденности 1-3 видов (для выделения таких областей рекомендуется использовать прямоугольные параллелепипеды). При этом, если области загромождения 1-3 вида разделены областями 4 вида, то эти области могут рассматриваться отдельно только в случае, если:
имеет место только дефлаграция (если в облаке имеет место детонация, то области отдельно рассматриваться не должны);
минимальное расстояние между областями загромождения 1-3 больше предельно допустимой величины, определяемой на основе характерного размера соответствующей области.
Под характерным размером загроможденной области подразумевается её максимальная протяженность по длине или высоте, или ширине. Области объединяются, если расстояние между объемами меньше ,
где 0,5, если избыточное давление, возникающее при взрыве в рассматриваемой загроможденной области, больше 100 кПа;
0,25, если избыточное давление, возникающее при взрыве в рассматриваемой загроможденной области, меньше 10 кПа;
линейно интерполируется между 0,25 и 0,5 в остальных случаях.
Вид загромождения для объединенной области определяется по наибольшему среди объединяемых областей. Таким образом, для одного дрейфующего облака решается в общем случае несколько задач о взрывах различных частей облака. При этом итоговая опасность оценивается по уровню воздействия от каждого взрыва, но не менее уровня воздействия взрыва всего дрейфующего облака при условии его расположения в пространстве вида 4.
18.4. Определение масс горючего вещества, содержащегося в облаке ТВС в концентрационных пределах воспламенения, в каждой области загромождения (в т.ч. в полученных путем объединения областей).
18.5. Определение эффективного энергозапаса ТВС для каждой области загромождения (в т.ч. в полученных путем объединения областей).
18.6. Определение отдельно центра взрыва как центра масс для каждой области загромождения (в т.ч. в полученной путем объединения нескольких областей).
18.7. Расчет максимального избыточного давления и импульса фазы сжатия воздушных ударных волн для каждой области загромождения отдельно (в т.ч. в полученных путем объединения областей).
18.8. Определение дополнительных характеристик взрывной нагрузки.
18.9. Оценка поражающего воздействия от различных вариантов взрывов ТВС.
19. Эффективный энергозапас горючей смеси в пределах области загромождения (здесь и далее приведены зависимости для расчета конкретного варианта взрыва ТВС в пределах области загромождения) определяется по соотношению:
при (1)
или
при
20. При расчете параметров взрыва облака ТВС, лежащего на поверхности земли, величина эффективного энергозапаса удваивается. Для оценки объема газового облака ТВС можно воспользоваться простым соотношением:
(2)
Стехиометрическая концентрация горючего вещества в ТВС определяется из справочных данных или рассчитывается отдельно.
В случае, если определение концентрации горючего вещества в смеси затруднено, в качестве величины в соотношении (1) принимается концентрация, соответствующая стехиометрической концентрации.
21. Теплота сгорания горючего газа в ТВС берется из справочных данных или оценивается по формуле: МДж/кг.
Корректировочный параметр для наиболее распространенных в промышленном производстве опасных веществ определяется по таблице N 1 приложения N 3 к Руководству.
Определение ожидаемого режима взрывного превращения
Классификация горючих веществ по степени чувствительности
22. ТВС, способные к образованию горючих смесей с воздухом, по своим взрывоопасным свойствам разделены на четыре класса. Классификация горючих веществ по степени чувствительности приведена в таблице N 1 приложения N 3 к Руководству.
В случае, если вещество отсутствует в таблице N 1 приложения N 3 к Руководству, его следует классифицировать по аналогии с имеющимися в данной таблице веществами, а при отсутствии информации о свойствах данного вещества - относить его к классу 1, то есть рассматривать как наиболее опасный случай.
Классификация ожидаемого режима взрывного превращения