ГОСТ Р 58499-2019
(ИСО 29461-1:2013)
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
СИСТЕМЫ ОЧИСТКИ ВОЗДУХА, ПОДАВАЕМОГО В РОТОРНЫЕ УСТАНОВКИ. МЕТОДЫ ИСПЫТАНИЙ
Часть 1
Статические фильтрующие элементы
Air intake filter systems for rotary machinery. Test methods. Part 1. Static filter elements
ОКС 13.040.40, 29.160.99
Дата введения 2019-12-01
1 ПОДГОТОВЛЕН Закрытым акционерным обществом "Научно-исследовательский центр контроля и диагностики технических систем" (ЗАО "НИЦ КД") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 184 "Обеспечение промышленной чистоты"
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 29 августа 2019 г. N 558-ст
4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 29461-1:2013* "Системы очистки воздуха, подаваемого в роторные установки. Методы испытаний. Часть 1. Статические фильтрующие элементы" (ISO 29461-1:2013 "Air intake filter systems for rotary machinery - Test methods - Part 1: Static filter elements", MOD) путем внесения технических отклонений, указанных во введении к настоящему стандарту.
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.
Международный стандарт разработан Техническим комитетом ISO/TC 142.
Сведения о соответствии ссылочных национальных стандартов международным стандартам, использованным в качестве ссылочных в примененном международном стандарте, приведены в дополнительном приложении ДА
5 ВВЕДЕН ВПЕРВЫЕ
Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)
0.1 Фильтры в производстве электроэнергии/применение компрессора
При использовании роторных машин в состав фильтрационной системы, как правило, включен набор фильтрующих элементов, расположенных соответствующим образом. Развитие турбинного оборудования, применяемого для производства энергии или других целей, привело к созданию более сложного оборудования, и поэтому появилась потребность в качественной защите этих систем. Известно, что загрязнение в виде частиц может существенно ухудшить работу силовой установки турбины.
Это явление часто описывают с помощью таких понятий, как "эрозия", "загрязнение" и "горячая коррозия", когда попадание соли и других коррозионных частиц создает потенциальные проблемы. Другие частицы различных веществ могут также приводить к значительному снижению эффективности систем. Необходимо иметь в виду, что устройства воздушного фильтра в таких системах функционируют в различных условиях окружающей среды. Диапазон загрязнения климата и загрязнения частиц очень широк: от пустынь до влажных дождевых лесов и арктических сред. Требования к этим системам фильтров различаются в зависимости от того, где именно они работают.
Настоящий стандарт связывает эффективность фильтрующих систем воздухозаборников со сбором не только тяжелой пыли, но и частиц в диапазоне размеров, который считается проблемной областью для этих систем. При оценке загрязнения турбины следует учитывать наличие, как ультратонких, так и мелких частиц, а также крупных частиц. Как правило, в наружном воздухе ультратонкие и мелкие частицы в диапазоне размеров от 0,01 до 1 мкм составляют более 99% от концентрации веществ и до 90% в поверхностном загрязнении. Большая часть массы, как правило, поступает из более крупных частиц (>1,0 мкм).
Турбокомпрессорные фильтры содержат широкий спектр продуктов, состоящий из фильтров для очень крупных частиц и фильтров для очень мелких субмикронных частиц. Ассортимент продукции представлен системами самоочистки по глубине и поверхности. Фильтры и системы должны работать в широком диапазоне температур и влажности - от очень низкой до очень высокой концентрации пыли и механических нагрузок. Существующие в настоящее время изделия могут быть разных типов и иметь различные функции, такие как сепараторы капель, коалесцирующие продукты, фильтровальные прокладки, металлические фильтры, инерционные фильтры, фильтровальные ячейки, мешочные фильтры, панельный, самоочищаемый и глубинный фильтр, картриджи и плиссированные поверхностные фильтрующие элементы.
В настоящем стандарте установлен способ сравнения этих продуктов и определены критерии, важные для систем впуска воздушного фильтра и защиты рабочих характеристик вращающихся механизмов. Эффективность продуктов, представленных в этом широком диапазоне, должна быть сопоставлена надлежащим образом. Сравнение различных типов фильтров следует проводить с учетом условий эксплуатации, в которых они будут использоваться.
Например, если фильтр или система фильтров предназначены для работы в экстремальной, очень пыльной среде, реальная эффективность частиц таких фильтров не может быть предсказана, потому что пылевая нагрузка фильтра играет важную роль. В следующих стандартах этой серии будет рассмотрена производительность фильтров для очистки и поверхностной загрузки.
0.2 Характеристики фильтрации
В приложениях А и В приведены положения по устранению потенциальных проблем ретракции, выпадения частиц и характеристик нейтрализации заряда в процессе эксплуатации определенных видов сред.
Некоторые типы фильтрующих сред используют электростатические эффекты для достижения высокой эффективности при низкой устойчивости к воздушному потоку. Воздействие таких факторов, как частицы пыли или другие мелкие частицы, может препятствовать данным зарядам, в результате чего ухудшается производительность фильтра. Процедура испытаний, описанная в приложении А, содержит методы идентификации явлений такого рода. Эту процедуру используют для определения наличия зависимости эффективности частиц фильтра от механизма электростатического удаления, по результатам которой получают количественную информацию о важности электростатического удаления. Выбор данной процедуры определен тем, что она хорошо установлена, воспроизводима и относительно быстро и легко может быть выполнена. В идеальном варианте процесса фильтрации каждая частица будет постоянно находиться на фильтрующем волокне начиная с первого контакта, но входящие частицы могут воздействовать на захваченную частицу и вытеснять ее в воздушный поток. Волокна или частицы из самого фильтра также могут быть освобождены в результате воздействия механических сил. С точки зрения пользователя, необходимо также рассмотреть положения, приведенные в приложении В.
Фильтры с низкой начальной или условной эффективностью частиц (<35%) для субмикронных частиц (0,4 мкм), которые не повышают свою эффективность во время операции, как правило, не обеспечивают серьезной защиты для рабочих механизмов при пробоотборе типичных атмосферных аэрозолей, в которых большая часть частиц менее 1,0 мкм. Однако в некоторых случаях с аэрозолями, имеющими доминирующую фракцию крупных частиц, фильтры с низкой эффективностью на субмикронных частицах могут служить защитой на более поздних стадиях фильтрации, а также иметь более высокую среднюю эффективность частиц 0,4 мкм (например, поверхностные загрузочные фильтры) из-за загрузки пыли. Поэтому гравиметрический тест может предоставить некоторую информацию о мощности и гравиметрической эффективности для этих аэрозолей. В общем случае более низкий общий уровень фильтрации, чем 35%, при загрязнении частицами 0,4 мкм не рекомендуется применять для системы воздухозаборного фильтра вращающихся механизмов, когда аэрозольная загрузка фильтров не способствует значительному повышению эффективности во время работы.
0.3 Структура стандартов*
_______________
* См. [1].
Методы и процедуры определения эффективности частиц, падения давления и соответствующие формы отчетов являются одинаковыми для всех типов статического фильтрующего элемента.
Методы испытаний, касающиеся эффективности частиц, падения давления и полученных значений, идентичны для всех фильтров, за исключением характеристик загрузки и процедуры очистки, которые отличаются для очищаемых фильтров поверхностной загрузки. Эти фильтры включают процедуры очистки и имеют разные нагрузочные характеристики, поэтому им требуются соответствующие модифицированные методы испытаний, которые будут определены в части 2 данной серии стандартов.
Часть 3 содержит методы определения механической целостности фильтров в условиях, которые могут возникнуть в ненормальных условиях эксплуатации.
В части 4 описаны методы тестирования установленных фильтров в условиях эксплуатации (тестирование на месте).
Часть 5 охватывает методы испытаний для конкретных требований морского применения и методы определения эффективности удаления морской соли из отдельных фильтров и/или полных фильтрующих систем.
Часть 6 охватывает методы испытаний для очищаемых фильтрующих элементов, за исключением тестирования системы (например, устройство для очистки), как в части 2.
Настоящий стандарт устанавливает методы испытаний для статических фильтрующих блоков, как правило, типа глубинной загрузки (см. 3.43 и 3.44). Все фильтры могут быть протестированы аналогичным образом, что дает сопоставимые результаты. Однако для фильтров поверхностной нагрузки, фильтров обратного импульса, морских фильтров, а также других фильтрующих систем, которые не считаются статическими фильтрами, должна быть применена соответствующая часть данной серии стандартов.
Для многоступенчатых систем, в которых приведен ряд таких компонентов, как оборудование для очистки, фильтры, допускается использование настоящего стандарта, если могут быть выполнены квалификационные требования испытательной установки. В тех случаях, когда это невозможно, можно применять процедуры части 4 (тестирование на месте).
В настоящем стандарте ссылки на международные стандарты заменены ссылками на национальные стандарты.
Настоящий стандарт устанавливает методы и процедуры определения характеристик воздушных фильтров, используемых в воздушных системах, для роторных механизмов, таких как стационарные газовые турбины, компрессоры и другие стационарные двигатели внутреннего сгорания. Это относится к воздушным фильтрам, имеющим начальную эффективность частиц не более 99,9% относительно частиц 0,4 мкм. Фильтры с более высокой эффективностью частиц следует тестировать и классифицировать в соответствии с требованиями других стандартов*. Эти процедуры предназначены для фильтров, работающих со скоростью потока от 0,25 м/с (900 м/ч) до 1,67 м/с (6000 м/ч).
_______________
* См. [2].
Настоящий стандарт следует применять к статическим (барьерным) фильтрам, а также к другим типам фильтров и систем при соответствующих условиях.
В настоящем стандарте использованы два метода определения эффективности:
- эффективность частиц (измеренная по количеству и размеру частиц);
- гравиметрическая эффективность (процентное соотношение массы загружаемой пыли).
Также образец плоского фильтра или пробу в эластичной емкости из идентичного фильтра кондиционируют (выгружают) для предоставления информации об интенсивности работы механизма электростатического удаления.
После определения эффективности исходных частиц необработанный фильтр загружают пылью поэтапно до тех пор, пока не будет достигнуто конечное испытательное падение давления. Затем получают информацию о производительности фильтра. Результаты работы, полученные в соответствии с положениями настоящего стандарта, не могут быть количественно применены (сами по себе) для прогнозирования эффективности работы в отношении эффективности и срока службы фильтра. Другие факторы, влияющие на эффективность, которые должны быть приняты во внимание, описаны в приложениях.
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ГОСТ Р ИСО 14644-3 Чистые помещения и связанные с ними контролируемые среды. Часть 3. Методы испытаний
ГОСТ Р ИСО 21501-4 Получение распределения частиц по размерам. Оптические методы оценки отдельных частиц. Часть 4. Счетчики частиц в воздухе для чистых зон, работающие на принципе рассеяния света
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1
скорость воздушного потока (test airflow rate): Объемный расход воздуха, используемый для тестирования. [[3], статья 3.1.106] |
3.2 Скорость
3.2.1