5.1 Общие положения
Для анализа образцов используют два различных способа: отбор дискретных образцов выделяемого газа и использование обогреваемой проточной кюветы. Следует отметить, что только второй способ позволяет выполнять расчет профилей выделяемого газа и функциональной группы.
5.2 Отбор выделяемого газа
Отбор выделяемого газа является наименее точным способом получения ТГА/ИК данных. В рамках данной методики выделяемый газ отбирают из ТГА-печи дискретными аликвотами, которые впоследствии подвергают анализу. При использовании этого способа особенно важно контролировать кривую потери массы ТГА для определения времени или температуры, при которой был проведен отбор пробы. Газообразные пробы можно улавливать в обогреваемую газовую кювету малого объема на выходе ТГ анализатора, анализировать, а затем вымывать выходящим потоком ТГА. Когда следующую исследуемую аликвоту помещают в газовую кювету, поток вновь останавливают для проведения анализа. Данный процесс можно облегчить, сконструировав температурную программу ТГА таким образом, чтобы температура поддерживалась постоянной во время проведения анализа отобранной пробы (метод ступеней). Допускается отбирать фракции в виде конденсированной фазы пропусканием выходящего потока ТГА через растворитель, порошкообразное твердое вещество или охлаждаемую ловушку для последующего анализа. Инфракрасная спектрометрия выполняется монохроматором, спектрометром с фильтром или ИК-Фурье-спектрометром. Основные методики микроанализа и качественного анализа приводятся в ГОСТ Р 57939 и ГОСТ Р 57941.
Так как при использовании методики отбора выделяемого газа исследуемый образец статичен, то для улучшения отношения сигнал/шум время накопления спектра или число спектрограмм для усреднения может быть увеличено. Однако при отборе паровой фазы выделяемого газа состав пробы может измениться вследствие медленного разложения или конденсации компонентов пробы на стенках кюветы. Первоначально в течение короткого времени должен быть получен эталонный спектр, который можно использовать для оценки стабильности пробы при дальнейшем более длительном анализе.
5.3 Анализ выделяемого газа с использованием проточной кюветы
Другим способом исследования выделяемых газов при проведении ТГА/ИК эксперимента является использование специальным образом сконструированной проточной кюветы. Проточную кювету располагают в инфракрасном спектрометре на пути ИК луча. ИК монохроматоры и спектрометры с фильтром обычно используют для анализа в определенном диапазоне частот во время проведения эксперимента ТГА. Если с использованием данных ИК приборов должен быть получен полный спектр, то выделяемый газ отбирают путем остановки потока и регистрируют инфракрасный спектр. В отличие от этих приборов, ИК-Фурье-спектрометры позволяют получить полный ИК спектр за короткое время, не оказывая влияния на проводимый ТГА эксперимент, другими словами, дают возможность непрерывной регистрации спектров без приостановки потока выделяемого газа или нагревания образца.
Обычно во время проведения ТГА/ИК эксперимента выделяемый газ анализируют ИК спектрометром в режиме реального времени. При проведении ТГА/ИК эксперимента требуемое разрешение по времени составляет приблизительно от 5 до 60 с для одной регистрации спектральных данных. Если необходимо получить полный ИК спектр, скорость ТГА эксперимента требует использования ИК-Фурье-спектрометров для поддержания достаточного разрешения по времени. Такие приборы включают в себя компьютер, способный хранить большие объемы данных спектрального анализа для последующей обработки.
Допускается использовать спектрометры с ограниченными возможностями обработки или хранения данных, способные регистрировать пригодные для анализа спектры во время эксперимента ТГА/ИК, но не предоставляющие возможностей для расчетов профилей выделяемого газа и функциональной группы.
Обычно проточную кювету напрямую соединяют с системой ТГА посредством обогреваемой передающей линии. Компоненты выделяемого газа анализируют на выходе из передающей линии. Данная методика обычно позволяет добиться высокой чувствительности для большинства анализируемых веществ (на уровне микрограмм).
Следует отметить, что любая металлическая поверхность внутри ТГА печи, передающей линии или узла проточной кюветы может реагировать с отдельными классами выделяемых газов, например аминами, вызывая их разложение. Это может привести к изменениям в химическом составе выделяемого газа. В этом случае определение наличия данного вещества в смеси будет невозможным. Такую ситуацию иногда можно определить путем сравнения профиля потери массы ТГА с профилем выделяемого газа.
Необходимо периодически контролировать пропускание ИК излучения через проточную кювету для оценки ее состояния. Из-за воздействия испускаемой энергии на детектор (см. 6.3) все испытания следует проводить при постоянной температуре проточной кюветы. Рекомендуется регистрировать уровень сигнала интерферограммы, энергетические характеристики одиночных пучков и соотношение двух последующих кривых одиночных пучков (в соответствии с возможностями используемого оборудования). При использовании детектора КРТ (кадмий-ртуть-теллур) данные испытания также будут фиксировать ухудшение эксплуатационных показателей из-за потери вакуума в сосуде Дьюара и последующего нарастания льда на поверхности детектора. Как правило, если потери переданной энергии превышают 10% общей энергии, рекомендуется провести очистку проточной кюветы.
Следует проявлять осторожность, чтобы стабилизировать или (лучше) устранить помеховые спектральные составляющие, которые являются результатом атмосферного поглощения на траектории ИК луча спектрометра. Наилучших результатов можно добиться полной продувкой оптической системы спектрометра сухим азотом. Как вариант, в качестве продувочного газа может применяться сухой воздух, однако в этом случае из-за присутствия в воздухе диоксида углерода будут наблюдаться помехи в областях поглощения от 2500 до 2200 см и от 720 до 620 см. Следует отметить, что эффективную продувку спектрометра могут обеспечить коммерчески доступные воздухоочистительные установки, которые удаляют водяной пар и диоксид углерода. В некоторых приборах оптическую систему герметизируют в присутствии влагопоглотителя, но при этом могут обнаруживаться помехи от диоксида углерода и водяного пара (от 1900 до 1400 см). Также печь ТГА, передающую линию и газовую кювету можно продувать газом, который не поглощает инфракрасное излучение. Обычно применяют инертный продувочный газ (азот или гелий), который подают с расходом от 10 до 200 мл/мин. Иногда для проведения характерных химических реакций используют окислительные или восстановительные среды, такие как кислород или водород. Для минимизации спектральных помех при подготовке эксперимента ТГА/ИК необходимо стабилизировать среду внутри спектрометра, печи и газовой кюветы перед началом нагревания и сбора спектральных данных. Стабильность среды при проведении эксперимента можно оценивать путем регистрации энергии однолучевого сигнала и соотношения двух последующих однолучевых спектров через определенные интервалы времени.
Особенности спектра диоксида углерода и (что более важно) водяного пара зависят от температуры, при которой регистрируется спектр. Это может стать труднопреодолимой проблемой в ТГА/ИК анализе, так как многие образцы при нагревании выделяют эти газы. Может возникнуть необходимость обнаружения этих молекул в нагретой проточной кювете в присутствии фонового поглощения от молекул в спектрометре и в интерфейсе, температура которых близка к комнатной. Особенно трудно при этих условиях пользоваться методиками спектрального вычитания (см. ГОСТ Р 57941) для компенсации присутствия водяного пара в спектре. Значимость данной проблемы может быть продемонстрирована попыткой обнаружить присутствие следовых количеств карбонильного соединения, когда в спектре наблюдаются полосы поглощения из-за присутствия водяного пара.