ГОСТ 34100.3.2-2017/ISO/IEC Guide 98-3/Suppl 2:2011
Группа Т80
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
НЕОПРЕДЕЛЕННОСТЬ ИЗМЕРЕНИЯ
Часть 3
Руководство по выражению неопределенности измерения
Дополнение 2
Обобщение на случай произвольного числа выходных величин
Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. Supplement 2. Extension to any number of output quantities
МКС 17.020
Дата введения 2018-09-01
Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"
Сведения о стандарте
1 ПОДГОТОВЛЕН Межгосударственным техническим комитетом по стандартизации МТК 125 "Статистические методы в управлении качеством продукции" на основе собственного перевода на русский язык англоязычной версии документа, указанного в пункте 4
2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 июля 2017 г. N 101-П)
За принятие проголосовали:
Краткое наименование страны по МК (ИСО 3166) 004-97 | Код страны по | Сокращенное наименование национального органа по стандартизации |
Азербайджан | AZ | Азстандарт |
Беларусь | BY | Госстандарт Республики Беларусь |
Казахстан | KZ | Госстандарт Республики Казахстан |
Киргизия | KG | Кыргызстандарт |
Россия | RU | Росстандарт |
(Поправка. ИУС N 8-2023).
4 Приказом Федерального агентства по техническому регулированию и метрологии от 12 сентября 2017 г. N 1067-ст межгосударственный стандарт ГОСТ 34100.3.2-2017/ISO/IEC Guide 98-3/Suppl 2:2011 введен в действие в качестве национального стандарта Российской Федерации с 1 сентября 2018 г.
5 Настоящий стандарт идентичен международному документу ISO/IEC Guide 98-3/Suppl 2:2011* "Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 2. Обобщение на случай произвольного числа выходных величин" ("Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement (GUM:1995) - Supplement 2: Extension to any number of output quantities", IDT).
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.
Международный документ разработан Рабочей группой WG 1 Объединенного комитета по руководствам в метрологии (как JCGM 102:2011) и одобрен национальными комитетами международных организаций ISO и IEC.
Официальные экземпляры международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, и международных стандартов, на которые даны ссылки, имеются в Федеральном агентстве по техническому регулированию и метрологии.
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных документов соответствующие межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА
6 ВВЕДЕН ВПЕРВЫЕ
7 ПЕРЕИЗДАНИЕ. Июль 2018 г.
Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты" (по состоянию на 1 января текущего года), а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)
ВНЕСЕНА поправка, опубликованная в ИУС N 8, 2023 год
Поправка внесена изготовителем базы данных
В "Руководстве по выражению неопределенности измерений" (GUM) [JCGM 100:2008] рассматриваются, в основном, одномерные модели измерений, включающие в себя единственную скалярную выходную величину. Однако на практике часто встречаются измерительные задачи с двумя и более выходными величинами. Примеры таких задач имеются в GUM для случаев электрических измерений с тремя выходными величинами [JCGM 100:2008 (раздел Н.2 приложения Н)] и температурных измерений с двумя выходными величинами [JCGM 100:2008 (раздел Н.З приложения Н)]. В настоящем стандарте рассматриваются многомерные модели измерения, включающие в себя произвольное число выходных величин. В большинстве случаев выходные величины коррелированны, поскольку зависят от общих входных величин. В настоящем стандарте рассматривается обобщение способа оценивания неопределенности по GUM [JCGM 100:2008 (раздел 5)], позволяющее получить оценки выходных величин, а также стандартные неопределенности и ковариации, соответствующие этим оценкам. Входные и выходные величины модели измерения могут быть действительными или комплексными.
Дополнение 1 к GUM [JCGM 101:2008] рассматривает трансформирование распределений [JCGM 100:2008 (раздел 5)] при заданной модели измерения как основу для выражения неопределенности измерения и реализацию данной процедуры посредством метода Монте-Карло [JCGM 100:2008 (раздел 7)]. Как и в GUM, в нем рассмотрены только модели с единственной скалярной выходной величиной [JCGM 101:2008 (раздел 1)]. Настоящий стандарт рассматривает обобщение метода Монте-Карло с целью получения дискретного представления совместного распределения вероятностей для выходных величин многомерной модели. Такое дискретное представление служит основой для получения оценок выходных величин, их стандартных неопределенностей и ковариации. Использование метода Монте-Карло является альтернативой способу оценивания неопределенности по GUM, особенно в ситуациях, когда последний не способен обеспечить достоверные результаты измерений вследствие того, что (а) линеаризация модели приводит к существенному искажению результатов измерения или (б) распределение вероятностей для выходной величины (или величин) не может быть описано многомерным нормальным распределением.
Настоящий стандарт устанавливает также метод определения области охвата для выходных величин многомерной модели, являющейся аналогом интервала охвата в случае одномерной модели, для заданной вероятности охвата. Рассматриваются области охвата в форме эллипсоидов или прямоугольных параллелепипедов. Применение численных процедур расчета неопределенности измерения с использованием метода Монте-Карло дает возможность приближенного построения областей охвата наименьшего объема.
Настоящий стандарт является дополнением к "Руководству по выражению неопределенности измерения" (GUM) (JCGM 100:2008) и распространяется на модели измерения с произвольным числом входных и выходных величин. Входящие в модель измерения величины могут быть действительными и/или комплексными. Рассмотрено два подхода к использованию таких моделей. Первый представляет собой обобщение способа оценивания неопределенности по GUM. Второй - использование метода Монте-Карло для трансформирования распределений. Использование метода Монте-Карло дает возможность получить достоверные результаты в ситуациях, когда условия применимости первого подхода не выполняются.
Способ оценивания неопределенности по GUM применим, когда информацию о входных величинах можно представить в виде их оценок (например, полученных измерением), связанных с этими оценками стандартных неопределенностей и, при необходимости, ковариаций. Использование соответствующих формул и процедур позволяет на основе указанной информации получить оценки, а также соответствующие им стандартные неопределенности и ковариации для выходных величин. Эти формулы и процедуры применимы к моделям измерения, для которых выходные величины (a) выражены непосредственно как функции от выходных величин (функции измерения) или (b) могут быть получены решением уравнений, связывающих входные и выходные величины.
В целях упрощения формулы, применяемые в настоящем стандарте, даны в матричной форме записи. Дополнительным преимуществом такой формы записи является ее приспособленность к реализации на многих языках программирования и в системах, которые поддерживают матричную алгебру.
Способ оценивания неопределенности измерения с применением метода Монте-Карло основывается на (i) присвоении входным величинам модели измерения соответствующих распределений вероятностей [JCGM 101:2008 (раздел 6)], (ii) определении дискретного представления совместного распределения вероятности для выходных величин и (iii) получения из этого дискретного представления оценок выходных величин, их стандартных неопределенностей и ковариаций. Данный подход является обобщением метода Монте-Карло, установленного в JCGM 101:2008 применительно к моделям с единственной скалярной выходной величиной.
Применение вышеуказанных подходов позволяет получить при заданной вероятности охвата область охвата для выходных величин многомерной модели - аналог интервала охвата для одномерной модели с единственной скалярной выходной величиной. Рассматриваемые в настоящем стандарте области охвата имеют формы гиперэллипсоидов (далее - эллипсоиды) и прямоугольных гиперпараллелепипедов (далее - параллелепипеды) в многомерном пространстве выходных величин. В случае применения метода Монте-Карло приведена также процедура приближенного построения области охвата минимального объема.
Применение стандарта иллюстрировано подробными примерами.
Настоящий стандарт служит дополнением к GUM и должен быть использован вместе с ним и с Дополнением 1 к GUM (соответственно, JCGM 100:2008 и JCGM 101:2008). Настоящий стандарт предназначен для тех же пользователей, что и два вышеуказанных документа (см. также JCGM 104).
В настоящем стандарте использованы нормативные ссылки на следующие документы*:
________________
* Таблицу соответствия национальных стандартов международным см. по ссылке. - Примечание изготовителя базы данных.
JCGM 100:2008, Guide to the expression of uncertainty in measurement (GUM) (Руководство по выражению неопределенности измерения (GUM))
JCGM 101:2008, Evaluation of measurement data - Supplement 1 to the "Guide to the expression of uncertainty in measurement" - Propagation of distributions using a Monte Carlo method (Оценивание данных измерений. Дополнение 1 к "Руководству по выражению неопределенности измерения". Трансформирование распределений с использованием метода Монте-Карло)
JCGM 104:2009, Evaluation of measurement data - An introduction to the "Guide to the expression of uncertainty in measurement" and related documents (Оценивание данных измерений. Введение к "Руководству по выражению неопределенности измерения" и сопутствующим документам)
JCGM 200:2008, International Vocabulary of Metrology - Basic and general concepts and associated terms (VIM) (Международный словарь по метрологии. Основные и общие понятия и связанные с ними термины (VIM))
В настоящем стандарте применены термины по JCGM 100:2008 и JCGM 200:2008, некоторые из которых (при необходимости, модифицированные) приведены в настоящем разделе, а также следующие термины с соответствующими определениями (обозначения, использованные в настоящем стандарте, приведены в приложении D).
3.1 действительная величина (real quantity): Величина, числовое значение которой является действительным числом.
3.2 комплексная величина (complex quantity): Величина, числовое значение которой является комплексным числом.
Примечание - Комплексная величина может быть представлена двумя действительными величинами в форме алгебраической
или тригонометрической
,
где символ " " обозначает транспонирование;
- мнимая единица, -1;
и - соответственно действительная и мнимая части ;
и - соответственно модуль и аргумент .
3.3 векторная величина (vector quantity): Совокупность величин, упорядоченных в виде элементов матрицы с одним столбцом.
3.4 действительная векторная величина (real vector quantity): Векторная величина, элементами которой являются действительные величины.
Пример - Действительная векторная величина , состоящая из элементов (действительных чисел) , ..., может быть представлена в виде матрицы размерности (матрицы-столбца):
.
3.5 комплексная векторная величина (complex vector quantity): Векторная величина, элементами которой являются комплексные величины.
Пример - Комплексная векторная величина , состоящая из элементов (комплексных чисел) , ..., может быть представлена в виде матрицы размерности (матрицы-столбца):