Статус документа
Статус документа


ГОСТ Р 8.775-2011


НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

ДИСПЕРСНЫЙ СОСТАВ ГАЗОВЫХ СРЕД

Определение размеров наночастиц по методу дифференциальной электрической подвижности аэрозольных частиц

State system for ensuring the uniformity of measurements. Disperse composition of gas atmospheres. Determination of nano particle size by differential electrical mobility analysis for aerosol particles



ОКС 17.020

Дата введения 2013-01-01

     

Предисловие

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений" (ФГУП "ВНИИФТРИ")

2 ВНЕСЕН Управлением метрологии Федерального агентства по техническому регулированию и метрологии

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 13 декабря 2011 г. N 1120-ст

4 Настоящий стандарт разработан с учетом основных нормативных положений международного стандарта ИСО 15900:2009* "Определение гранулометрического состава. Определение дифференциальной электрической подвижности аэрозольных частиц" (ISO 15900:2009 "Determination of particle size distribution - Differential electrical mobility analysis for aerosol particles", NEQ)

________________
     * Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.



5 ВВЕДЕН ВПЕРВЫЕ

6 ПЕРЕИЗДАНИЕ. Март 2019 г.


Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

     1 Область применения


Настоящий стандарт распространяется на метод измерений размеров наночастиц в диапазоне от 1 до 1000 нм в газовых средах по их дифференциальной подвижности в электрическом поле (далее - метод измерений).

Метод измерений реализуют в системах анализа аэрозолей, в качестве основного элемента которых используют классификатор, способный разделять аэрозольные частицы по их электрической подвижности. Классификаторы могут быть различной конструкции: цилиндрические, радиальные, с параллельными пластинами и т.д.

В настоящем стандарте рассмотрен метод измерений, реализуемый в системах анализа с цилиндрическим классификатором.

Стандарт не устанавливает конкретных методик измерений размеров частиц конкретных продуктов.

     2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 34100.1/ISO/IEC Guide 98-1:2009 Неопределенность измерения. Часть 1. Введение в руководства по выражению неопределенности измерения

ГОСТ 34100.3/ISO/IEC Guide 98-3:2008 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения

ГОСТ 34100.3.1/ISO/IEC Guide 98-3/Suppl 1:2008 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло

ГОСТ Р ИСО 5725-2 Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений

ГОСТ Р ИСО 14644-1 Чистые помещения и связанные с ними контролируемые среды. Часть 1. Классификация чистоты воздуха

ГОСТ Р ЕН 1822-2 Высокоэффективные фильтры очистки воздуха EPA, HEPA и ULPA. Часть 2. Генерирование аэрозолей, испытательное оборудование, статистка счета частиц

ГОСТ Р ЕН 1822-3 Высокоэффективные фильтры очистки воздуха EPA, HEPA и ULPA. Часть 3. Испытания плоского фильтрующего материала

ГОСТ Р ЕН 1822-4 Высокоэффективные фильтры очистки воздуха EPA, HEPA и ULPA. Часть 4. Испытания фильтров на утечку (метод сканирования)

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

     3 Термины и определения


В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1

аэрозоль: Дисперсные системы, состоящие из мелких частиц, взвешенных в воздухе или другом газе (пыль, дым, туман, смог).

[ГОСТ Р 51109-97, статья 5.11]

3.2

дисперсная система: Система, состоящая из двух или более фаз (тел) с сильно развитой поверхностью раздела между ними.

[ГОСТ Р 51109-97, статья 5.6]

3.3

дисперсная фаза: Прерывная фаза в дисперсной системе в виде отдельных мелких твердых частиц, капелек жидкости или пузырьков газа.

[ГОСТ 16887-71, статья 1]

3.4 монодисперсный аэрозоль: Аэрозоль, содержащий частицы только одного размера.

3.5 наночастица: Твердый, жидкий или многофазный объект, в том числе микроорганизм, размером менее или равным 100 нм.

3.6 размер наночастицы: Диаметр сферы, отклик которой в контролирующем приборе равен отклику от оцениваемой наночастицы.

3.7 счетная концентрация дисперсной фазы: Количество отдельных частиц в единице объема дисперсной системы.

3.8 распределение частиц по размерам: Зависимость счетной концентрации частиц от их размера.

3.9 дифференциальная электрическая подвижность: Подвижность заряженной частицы в электрическом поле.

3.10 ламинарное течение: Течение газа без временной или пространственной неоднородной активности или турбулентных вихревых потоков.

3.11 счетчик ядер конденсации: Устройство, которое позволяет измерять счетную концентрацию ультрамелких частиц на основе эффекта конденсации, позволяющего увеличивать их размеры.

3.12 электрометр: Устройство, предназначенное для измерения электрического тока в диапазоне от 1 фА до 10 пА.

3.13 биполярное зарядное устройство: Устройство, предназначенное для достижения устойчивого равновесного состояния заряжения путем воздействия на аэрозольные частицы положительными и отрицательными ионами в пределах этого устройства.

3.14 нейтрализация заряда: Процесс, при котором посредством воздействия на аэрозольные частицы электрически нейтральным облаком положительных и отрицательных зарядов газа распределение аэрозольных частиц по заряду приводит к установлению равновесия и приближению результирующего заряда к нулевому.

     4 Сущность метода измерений


Метод измерений основан на сепарации аэрозольных частиц по размерам при прохождении их через электрическое поле, где заряженные аэрозольные частицы меняют свою траекторию движения в зависимости от их размера, скорости потока аэрозоля, напряженности электрического поля и геометрии классификатора.

Зависимость между дифференциальной электрической подвижностью и размером частицы для сферических частиц описывают уравнением

,                                                        (1)


где - количество элементарных зарядов на частице;

- элементарный заряд (1,6·10 Кл);

- динамическая вязкость газа;

- диаметр частицы;

- поправочный коэффициент (Каннингема) на скольжение (газа).

Поправка на скольжение распространяет расчет на основе закона Стокса тормозящей силы, действующей на сферическую частицу, движущуюся с низким числом Рейнольдса в газовой среде, на частицы размером порядка нанометра. Поправку аппроксимируют уравнением:

,                                                 (2)


где , , - эмпирические константы;

- число Кнудсена, равное ;

где - средняя длина свободного пробега аэрозольной частицы;   

            - размер частицы.

Зависимость между дифференциальной электрической подвижностью частицы и параметрами цилиндрического классификатора описывают уравнением

________________

           См. [1].

,                                                              (3)


где - скорость потока аэрозоля в классификаторе;

- наружный радиус внутреннего цилиндра классификатора;

- внутренний радиус наружного цилиндра классификатора;

- напряжение постоянного тока, создающего электрическое поле;

- эффективная длина между входом и выходом потока аэрозоля в классификаторе.

Из уравнений (1) и (3) может быть получена формула

Доступ к полной версии документа ограничен
Полный текст этого документа доступен на портале с 20 до 24 часов по московскому времени 7 дней в неделю.
Также этот документ или информация о нем всегда доступны в профессиональных справочных системах «Техэксперт» и «Кодекс».
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте «Техэксперт: Базовые нормативные документы» бесплатно
Реклама. Рекламодатель: Акционерное общество "Информационная компания "Кодекс". 2VtzqvQZoVs