Статус документа
Статус документа


ГОСТ Р 54500.3.1-2011/Руководство ИСО/МЭК 98-3:2008/Дополнение 1:2008

Группа Т80

     

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

НЕОПРЕДЕЛЕННОСТЬ ИЗМЕРЕНИЯ

Часть 3

Руководство по выражению неопределенности измерения

Дополнение 1

Трансформирование распределений с использованием метода Монте-Карло

Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. Supplement 1. Propagation of distributions using a Monte Carlo method



ОКС 17.020

Дата введения 2012-10-01

     

Предисловие


Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт метрологии им. Д.И.Менделеева" (ФГУП "ВНИИМ") и Автономной некоммерческой организацией "Научно-исследовательский центр контроля и диагностики технических систем" (АНО "НИЦ КД") на основе собственного аутентичного перевода на русский язык международного документа, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 125 "Статистические методы в управлении качеством продукции"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 16 ноября 2011 г. N 555-ст

4 Настоящий стандарт идентичен международному документу Руководство ИСО/МЭК 98-3:2008/Дополнение 1:2008* "Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло" [ISO/IEC Guide 98-3:2008/Supplement 1:2008 "Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement (GUM:1995) - Supplement 1: Propagation of distributions using a Monte Carlo method"].

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

В стандарт введены технические изменения 1, подготовленные техническим управляющим комитетом (ТМВ) ИСО, которые выделены двойной вертикальной линией, расположенной слева от соответствующего текста.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные и межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА


5 ВВЕДЕН ВПЕРВЫЕ


Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Введение

0.1 Общие сведения

В настоящем стандарте рассматривается трансформирование распределений для заданной математической модели измерений [Руководство ИСО/МЭК 98-3 (3.1.6)] с целью получения оценки неопределенности измерений и реализация этой процедуры методом Монте-Карло. Метод применим к моделям с произвольным числом входных величин и единственной выходной величиной.

Метод Монте-Карло является практической альтернативой способу оценки неопределенности по GUM [Руководство ИСО/МЭК 98-3 (3.4.8)]. Метод имеет особое значение, когда:

a) линеаризация модели не обеспечивает ее адекватного представления;

b) распределение выходной величины, например вследствие своей выраженной асимметрии, не может быть описано нормальным распределением (распределением Гаусса) или масштабированным смещенным -распределением.

В случае а) оценки выходной величины и соответствующей стандартной неопределенности, полученные в соответствии с GUM, могут оказаться недостоверными. В случае b) при оценке неопределенности могут быть получены недостоверные интервалы охвата (обобщение понятия расширенной неопределенности, используемого в GUM).

GUM [Руководство ИСО/МЭК 98-3 (3.4.8)] "...устанавливает общую методологию оценивания неопределенности...", основанную на использовании закона трансформирования неопределенностей [Руководство ИСО/МЭК 98-3 (раздел 5)], когда выходная величина подчиняется нормальному распределению или масштабированному смещенному -распределению [Руководство ИСО/МЭК 98-3 (G.6.2, G.6.4)]. При этом закон трансформирования неопределенностей позволяет учесть неопределенности входных величин и вычислить стандартную неопределенность оценки выходной величины на основе:

1) наилучших оценок входных величин;

2) стандартных неопределенностей оценок входных величин;

3) числа степеней свободы для стандартных неопределенностей оценок входных величин;

4) всех ненулевых ковариаций пар этих оценок.

Кроме того, полученная плотность распределения вероятностей выходной величины позволяет определить для выходной величины интервал охвата с заданной вероятностью.

Наилучшие оценки входных величин, их стандартные неопределенности, ковариации и числа степеней свободы представляют собой ту информацию, которая необходима для применения метода расчета неопределенности по GUM. Метод, устанавливаемый настоящим стандартом, основан на использовании плотностей распределения вероятностей входных величин для последующего расчета плотности распределения вероятностей выходной величины.

В то время как для применения способа оценивания неопределенности по GUM существуют некоторые ограничения, трансформирование распределений всегда позволяет получить плотность распределения вероятностей выходной величины на основе распределений входных величин. Плотность распределения вероятностей выходной величины представляет собой выражение знания об этой величине, полученного на основе знаний о входных величинах в виде сопоставленных им распределений. После получения плотности распределения вероятностей выходной величины могут быть определены математическое ожидание, используемое в качестве оценки выходной величины, и стандартное отклонение, используемое в качестве стандартной неопределенности этой оценки. Кроме того, плотность распределения вероятностей может быть использована для получения интервала охвата для выходной величины, соответствующего заданной вероятности.

Использование плотностей распределения вероятностей в соответствии с настоящим стандартом в основном согласуется с принципами GUM. Плотность распределения вероятностей величины отражает состояние знаний об этой величине, т.е. она численно определяет степень доверия тем значениям, которые могут быть приписаны упомянутой величине на основе доступной информации. Информация обычно состоит из необработанных статистических данных, результатов измерения, научных выводов, профессиональных суждений.

Для построения плотности распределения вероятностей случайной величины на основе наблюдений может быть применена теорема Байеса [27, 33]. Информация о систематических эффектах может быть преобразована в соответствующую плотность распределения вероятностей на основе принципа максимума энтропии [51, 56].

Трансформирование распределений имеет более широкую область применения, чем способ оценивания неопределенности по GUM. Метод трансформирования распределений использует более обширную информацию, чем та, что содержится в наилучших оценках и соответствующих стандартных неопределенностях (а также в числах степеней свободы и ковариациях).

Исторический обзор приведен в приложении А.

Примечание 1 - В GUM рассматривается случай, когда линеаризация модели измерения неприменима [Руководство ИСО/МЭК 98-3 (примечание к 5.1.2)]. Однако это рассмотрение ограничено использованием только основных нелинейных членов в ряде Тейлора для функции измерения, а также предположением о нормальности распределения входных величин.

Примечание 2 - Строго говоря, в GUM -распределение описывает не выходную величину , а величину [точнее, как указано в GUM, ], где - оценка , - стандартная неопределенность оценки [Руководство ИСО/МЭК 98-3 (G.3.1)]. Такое представление использовано и в настоящем стандарте.

Примечание 3 - Плотность распределения вероятностей не следует понимать в смысле частотного описания вероятности.

Примечание 4 - "Оценивание неопределенности нельзя рассматривать как типовую задачу, требующую применения стандартных математических процедур. От пользователя требуется детальное знание природы измеряемой величины и процедуры измерения. Поэтому качество оценки неопределенности, приписанной результату измерений, зависит, в конечном счете, от понимания, критического анализа и профессиональной добросовестности всех лиц, принимающих участие в ее получении" [17].

0.2 Основные сведения о JCGM

В 1997 г. семью международными организациями, подготовившими в 1993 г. "Руководство по выражению неопределенности измерения" (GUM) и "Международный словарь по метрологии. Основные и общие понятия и связанные с ними термины" (VIM), был образован Объединенный комитет по руководствам в метрологии (JCGM), возглавляемый директором Международного бюро мер и весов (МБМВ), который принял на себя ответственность за указанные документы от Технической консультативной группы по метрологии (ИСО/ТАГ 4).

Учредителями JCGM, помимо МБМВ, являются Международная электротехническая комиссия (МЭК), Международная федерация клинической химии и лабораторной медицины (МФКХ), Международное сотрудничество по аккредитации лабораторий (ИЛАК), Международная организация по стандартизации (ИСО), Международный союз теоретической и прикладной химии (ИЮПАК), Международный союз теоретической и прикладной физики (ИЮПАП) и Международная организация по законодательной метрологии (МОЗМ).

В рамках JCGM созданы две Рабочие группы (РГ). Задачей РГ 1 "Выражение неопределенности измерения" является содействие использованию Руководства (GUM), подготовка дополнений к Руководству и иных документов, способствующих его широкому применению. Задачей РГ 2 "Рабочей группы по Международному словарю основных и общих терминов в метрологии (VIM)" является пересмотр VIM и содействие его применению. Более подробную информацию о деятельности JCGM можно найти на сайте www.bipm.org.

Дополнения к GUM, подобные тому, что положен в основу настоящего стандарта, имеют целью распространить руководство на те аспекты, которые в этом руководстве в полной мере не отражены. При этом, однако, разрабатываемые дополнения соответствуют, насколько это возможно, общей методологии, изложенной в GUM.

     1 Область применения


В настоящем стандарте установлен численный метод, согласующийся с основными принципами GUM [Руководство ИСО/МЭК 98-3 (G.1.5)] и предназначенный для получения оценки неопределенности измерения. Этот метод может быть применен к любым моделям, имеющим единственную выходную величину, в которых входные величины характеризуются любыми заданными функциями распределения вероятностей [Руководство ИСО/МЭК 98-3 (G.1.4, G.5.3)].

Также как GUM, настоящий стандарт посвящен вопросам определения выражения для неопределенности измерения хорошо определенной физической величины, характеризуемой единственным значением [Руководство ИСО/МЭК 98-3 (1.2)].

В настоящем стандарте установлены также методы, применимые в ситуациях, когда условия применения способа расчета неопределенности по GUM [Руководство ИСО/МЭК 98-3 (G.6.6)] не выполняются или информация об их выполнении отсутствует. Стандарт также может быть применен в ситуациях, когда возникают трудности при оценке неопределенности по GUM, например вследствие сложности модели. Методы изложены в виде, облегчающем их программирование для расчетов на компьютере.

Настоящий стандарт может быть использован для определения плотности распределения вероятностей выходной величины, что позволяет получить:

a) оценку выходной величины;

b) стандартную неопределенность, ассоциированную с этой оценкой;

c) интервал охвата для выходной величины, соответствующий заданной вероятности охвата.

При заданных (i) модели, описывающей взаимосвязь входных величин с выходной величиной, и (ii) плотностях распределения вероятностей входных величин существует единственная плотность распределения вероятностей выходной величины. Как правило, последняя не может быть определена аналитически. Настоящий стандарт позволяет определить величины, указанные в перечислениях а), b) и с) с приемлемой точностью, не используя приближений, которые нельзя оценить количественно.

Настоящий стандарт позволяет получить интервал охвата для заданной вероятности охвата, в том числе вероятностно симметричный и наименьший интервалы.

Настоящий стандарт применим к статистически независимым входным величинам с соответствующими функциями плотности распределения вероятностей, а также к статистически зависимым случайным величинам, описанным совместной плотностью распределения.

Как правило, настоящий стандарт применяют в случаях, когда:

- вклад разных составляющих неопределенности может быть существенно неодинаков [Руководство ИСО/МЭК 98-3 (G.2.2)];

- трудно или неудобно находить частные производные от функции измерения, как того требует закон трансформирования неопределенностей;

- распределение выходной величины нельзя считать ни нормальным, ни масштабированным смещенным -распределением [Руководство ИСО/МЭК 98-3 (G.6.5)];

- оценка выходной величины и соответствующая стандартная неопределенность имеют приблизительно одинаковое значение [Руководство ИСО/МЭК 98-3 (G.2.1)];

- модель является достаточно сложной [Руководство ИСО/МЭК 98-3 (G.1.5)];

- плотности распределения вероятностей входных величин асимметричны [Руководство ИСО/МЭК 98-3(G.5.3)].

Прежде чем применять метод, установленный настоящим стандартом, рекомендуется проверить, позволяют ли условия измерительной задачи использовать способ оценивания неопределенности по GUM. Если условия позволяют, то основным методом расчета остается оценивание неопределенности способом, установленным в GUM.

Значение для неопределенности измерений, как правило, достаточно приводить с одной или двумя значащими цифрами. Методы, установленные настоящим стандартом, позволяют получить оценки с указанной точностью.

Применение стандарта иллюстрировано подробными примерами.

Настоящий стандарт служит дополнением к GUM и должен быть использован вместе с ним. Он не исключает использования других методов расчета неопределенности, не противоречащих GUM.

Примечание 1 - Настоящий стандарт неприменим к моделям, описываемым многозначными функциями (например, в виде решения квадратного уравнения без указания, какой из корней должен быть выбран).

Примечание 2 - В настоящем стандарте не рассмотрен случай, когда априорно известна плотность распределения вероятностей выходной величины, однако установленный в нем метод может быть модифицирован и для этой ситуации [16].

     2 Нормативные ссылки


Доступ к полной версии документа ограничен
Полный текст этого документа доступен на портале с 20 до 24 часов по московскому времени 7 дней в неделю.
Также этот документ или информация о нем всегда доступны в профессиональных справочных системах «Техэксперт» и «Кодекс».
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте «Техэксперт: Базовые нормативные документы» бесплатно
Реклама. Рекламодатель: Акционерное общество "Информационная компания "Кодекс". 2VtzqvQZoVs