Статус документа
Статус документа

ГОСТ Р МЭК 60825-1-2009 Безопасность лазерной аппаратуры. Часть 1. Классификация оборудования, требования и руководство для потребителей

Приложение D
(справочное)

Медицинские аспекты

D.1 Анатомия глаза

На рисунке D.1 показаны анатомические части строения человеческого глаза



1 - бровь; 2 - ресница; 3, 18, 24 - склера; 4 - вена сетчатки; 5 - оптический диск; 6 - веко; 7 - радужная оболочка; 8 - роговая оболочка (стекловидная передняя поверхность глаза); 9 - зрачок; 10 - водянистое тело; 11 - конъюнктива; 12 - выход оптического нерва; 13 - артерия сетчатки; 14 - кровеносные сосуды; 15 - хрусталик; 16 - стекловидное тело; 17 - фовеа; 19, 25 - свет; 20 - рецепторные клетки (палочки и колбочки); 21, 28 - эпителий пигмента; 22, 27 - сосудистая оболочка; 26 - рецепторные клетки (колбочки)

Рисунок D.1 - Анатомия глаза

На рисунке D.1 (область А) показана диаграмма внешнего вида левого глаза. Края век ограничивают область видения глаза (FOV) до формы миндаля. Основные части передней поверхности глаза на схеме снабжены надписями и указаны пунктирными линиями и стрелками.

В области В показана схема горизонтального сечения левого глаза. Глаз разделен на две части: переднюю камеру, которая ограничена роговой оболочкой, радужной оболочкой и хрусталиком, и заднюю камеру, которая ограничена сетчаткой и содержит желеобразное стекловидное вещество.

В области С показана внутренняя полость неповрежденного глаза, видимая через офтальмоскоп. Этот прибор направляет пучок света через зрачок и освещает внутреннюю полость глаза, позволяя видеть глазное дно. Оно имеет красноватый оттенок, однако хорошо видны главные сосуды сетчатки. Другими важными частями являются беловатый оптический диск и центральная ямка. Центральная ямка представляет собой небольшое углубление в сетчатке, которое может быть более интенсивно окрашено, чем окружающая сетчатка; она является областью наиболее острого зрения.

В области D показана структура сетчатки в разрезе (см. рисунок D.1, область В), увеличенная по сравнению с натуральной величиной в несколько сотен раз. Сетчатка состоит из ряда слоев нервных клеток, а также фоточувствительных клеток: палочек и колбочек, т.е. свет, падающий на поверхность сетчатки, проходит через слои нервных клеток, а затем достигает фоточувствительных клеток. Под слоем палочек и колбочек находится слой, который называется пигментным эпителием и содержит коричневато-черный пигмент - меланин; ниже находится слой с тонкими кровеносными сосудами хориокапиллярами.

Конечным поглощающим слоем является хороид, который содержит как пигментные клетки, так и кровеносные сосуды.

В области Е показана структура области центральной ямки, увеличенная в несколько сот раз. В ней представлены только колбочки. Нервные клетки расположены радиально в этой области наиболее острого зрения. Пигмент пятна, наиболее сильно поглощающий излучение в диапазоне от 400 до 500 нм, расположен в волоконном слое Хенла.

D.2 Влияние лазерного излучения на биологическую ткань

D.2.1 Общие положения

Механизм повреждения лазерным излучением аналогичен для всех биологических систем и может включать тепловые воздействия, термоакустические переходные процессы, фотохимические процессы и нелинейные эффекты. Степень участия каждого из этих воздействий в повреждении ткани может быть связана с определенными физическими параметрами источника облучения, наиболее важными из которых являются длина волны, длительность импульса, размер изображения, облученность и энергетическая экспозиция.

При экспозициях, выше пороговых, доминирующее воздействие связано с длительностью импульса облучения. Так при увеличении длительности импульса основными эффектами при следующих длительностях воздействия являются:

- акустические переходные процессы и нелинейные эффекты при наносекундных и субнаносекундных облучениях;

- тепловые эффекты от 1 мс до нескольких секунд и

- фотохимические эффекты при длительностях свыше 10 с.

Лазерное излучение отличается от большинства других известных видов излучения коллимированностью пучка. Этот фактор совместно с высокой начальной энергией приводит к передаче тканям большого количества энергии. Основным моментом при повреждении лазерным излучением любого типа является поглощение излучения биологической структурой. Поглощение происходит на атомарном или молекулярном уровне и зависит от длины волны. Таким образом, длина волны определяет, какая ткань может быть повреждена от излучения конкретного лазера.

Тепловые эффекты

Если структура поглотила достаточное количество энергии излучения, то колебания составляющих ее молекул увеличиваются, а это означает увеличение количества тепла. Повреждения от лазерного излучения в большинстве случаев связаны с нагревом поглощающей ткани(ей). Обычно такое термическое повреждение имеет ограниченную площадь, расположенную по сторонам участка поглощения лазерной энергии с центром в месте падения пучка. Клетки в пределах этой области имеют признаки ожога, и повреждение ткани связано, главным образом, с разрушением протеина. Как показано выше, действие вторичных механизмов повреждения при воздействии лазерного излучения может быть связано со временем реакции нагрева ткани, т.е. непосредственно связано с длительностью импульса лазера (см. рисунок D.2) и временем поглощения тепла. Термохимические реакции происходят и во время нагревания, и во время охлаждения и определяют зависимость размера пятна от теплового поражения. Если на ткань направлен непрерывный лазер или лазер, генерирующий длинные импульсы, то вследствие проводимости площадь структуры, испытывающей воздействие повышенной температуры, постепенно увеличивается. Такой распространяющийся тепловой фронт создает возрастающую зону повреждения, так как все большее количество клеток нагревается выше теплового предела. Размер изображения пучка также имеет большое значение, поскольку степень периферийного распространения вследствие проводимости является функцией размера, а также температуры начальной области нагрева ткани. Такой тип теплового повреждения обычно связан с воздействием непрерывных лазеров, лазеров с длинными импульсами, но также возможен и от лазеров с короткими импульсами. Для облучаемых поверхностей с размером пятна не более 1-2 мм от лучевого теплового потока определяется размер поврежденного пятна.



а - лазерная энергия поглощается биологической структурой; b - поглощенная энергия создает тепло, которое распространяется в окружающие ткани; с - при воздействии непрерывных лазеров или лазеров с длинными импульсами сохранение теплового фронта постепенно увеличивает область поражения; d - при воздействии лазеров с короткими импульсами высокая плотность мощности создает взрывное разрушение клеток и повреждение в результате физического смещения

Рисунок D.2 - Схема повреждения биологических структур лазером

Фотохимические эффекты

С другой стороны, степень повреждений может быть обусловлена поглощением света молекулами. Этот процесс вызывается поглощением света с определенной энергией. Однако помимо освобождения энергии вещество также подвергается воздействию химической реакции, присущей этому состоянию. Эта фотохимическая реакции способна нанести повреждение и при низких уровнях воздействия. В этом процессе некоторые биологические ткани, такие как кожа, хрусталик глаза и в особенности сетчатка, могут показать необратимые изменения, вызванные длительным воздействием облучения ультрафиолетом и светом коротких длин волн. Такие фотохимические изменения могут привести к повреждению структуры, если длительность облучения чрезмерна или если кратковременные облучения повторяются в течение длительного времени. Отдельные фотохимические реакции, вызываемые лазерным облучением, могут носить патологический или преувеличенный характер. Фотохимические реакции в общем следуют закону Бунзена и Роско, и при продолжительности не более чем от 1 до 3 ч (играют роль соответствующие механизмы) началом является энергетическая экспозиция в постоянном или широком диапазоне по длительности воздействия. Зависимости размера пятна, как происходит в случаях с тепловыми эффектами при тепловой диффузии, не существует.

Нелинейные эффекты