Для испытуемых ТС некоторых видов, работающих в микроволновом диапазоне, имеющих сложные диаграммы направленности излучения в трех плоскостях, целесообразно измерять не напряженность излучаемого поля, а полную излучаемую мощность. Это связано со сложной характеристикой взаимодействия измерительных антенн с испытуемым ТС, взаимным влиянием диаграмм направленности и т.д. Полная излучаемая мощность от испытуемого ТС может быть измерена при размещении его в камере с металлическими стенами.
Для того, чтобы исключить влияние эффектов стоячих волн, которые при их появлении могут вызвать неоднородное распределение плотности энергии в зависимости от места расположения ТС в камере, устанавливают специальные устройства, "рассеивающие" радиоволны (далее - рассеивающие устройства). При соответствующих размерах, форме, местоположении и скорости рассеивания данного рассеивающего устройства плотность энергии в любой точке камеры изменяется случайно при равномерном статистическом распределении поля по фазе, амплитуде и поляризации.
6.1 Камера
6.1.1 Размер и форма
Линейные размеры камеры должны быть большими по сравнению с длиной волны, соответствующей самой низкой частоте измерений. Камера также должна быть достаточно большой, чтобы вместить испытуемое ТС, рассеивающие устройства для создания определенной конфигурации поля в камере и приемные измерительные антенны. Размеры ТС, испытываемых в камере, могут быть различными - от небольшой микроволновой настольной печи объемом около 0,2 м до больших устройств высотой 1,7 м с основанием 0,76 м.
Камера может быть любой формы при условии, что ее размеры по трем измерениям имеют один порядок. Рекомендуется, чтобы размеры по трем измерениям были разными. Для самой низкой частоты 1 ГГц камера должна иметь объем не менее 8 м. Реальные размеры будут зависеть от физических характеристик камеры. Метод определения пригодности камеры приведен в 6.1.4.
Стены камеры и рассеивающие устройства должны быть металлическими. Соединения между металлическими частями должны быть механически прочными и иметь низкое электрическое сопротивление по всей длине, на поверхности металлических частей не должно быть коррозии. Внутри камеры не должно быть поглощающих материалов.
6.1.2 Дверь, отверстия в стенах и монтажные скобы
Дверь камеры должна быть достаточно большой для проноса оборудования и прохода операторов. Она должна открываться наружу и иметь плотную подгонку (без щелей) для минимизации потерь энергии. Для удобства монтажа передающие и приемные антенны внутри камеры могут прикрепляться к стенам при помощи монтажных скоб.
6.1.3 Рассеивающие устройства для создания однородного распределения энергии поля в камере
Далее приведено описание двух типов рассеивающих устройств, помогающих избежать стоячих волн в камере. Допускаются также другие виды этих устройств при условии, что эффективность рассеяния соответствует критерию, установленному в 6.1.4.
6.1.3.1 Рассеивающее устройство с вращающимися пластинами
При применении рассеивающего устройства с вращающимися пластинами эти устройства размещают на смежных стенах камеры на расстоянии от стен, составляющем, по крайней мере, 1/4 максимальной длины волны, используемой при измерениях.
Толщина пластины должна быть достаточной для обеспечения жесткости. Максимальная длина пластины определяется размерами стен, ширина должна быть около 1/5 их длины.
6.1.3.2 Рассеивающее устройство с вращающимися лопатками.
При использовании вращающихся лопаток две или три лопатки монтируют на соседних стенах камеры. Лопатки должны быть взаимно перпендикулярны. Пример формы лопаток рассеивающего устройства приведен на рисунке 12, они должны вращаться относительно оси, параллельной их длинной стороне.
Рисунок 12 - Пример лопаточного рассеивающего устройства
Диаметр вовлеченного в процесс рассеивания радиоволн пространства (в форме цилиндра) должен быть, по крайней мере, равен максимальной длине волны, используемой при измерениях, а длина лопаток должна быть максимальной в той мере, насколько это позволяют размеры стен. Конструкция рассеивающего устройства должна быть жесткой.
6.1.3.3 Скорость вращения
Скорость вращения рассеивающих устройств, размещенных в камере, должна быть различной. Наибольшее время одного оборота рассеивающих устройств должно быть не более 1/5 времени интегрирования индикаторного прибора. Для испытуемых ТС в соответствии с 6.1.5 скорость вращения должна быть в пределах от 50 до 200 об/мин. Рекомендуется, чтобы двигатели, используемые для вращения рассеивающих устройств, вместе с их редукторами находились вне камеры.
6.1.4 Испытания для проверки эффективности рассеивающих устройств
Необходимую однородность распределения энергии в камере определяют по "сглаживанию" изменения переходного затухания сигнала между передающей и приемной антеннами в камере в зависимости от частоты (далее - затухание связи в камере) (см. 6.1.5). На низких частотах из-за значительных длин волн труднее достигнуть однородности; при таких длинах волн существуют резко выраженные минимальные и максимальные значения затухания связи в камере. Чем выше эффективность рассеивающих устройств, тем меньшими являются минимальные и максимальные значения затухания и связи в камере, следовательно, ниже частота, на которой можно выполнять измерения. Затухание связи в камере измеряют во всей рабочей полосе частот камеры. На более низких частотах, на которых наблюдаются минимальные и максимальные значения затухания связи, измерения проводят с шагом по частоте 100 МГц. При проведении испытаний положение приемной антенны остается фиксированным, а передающую антенну последовательно поворачивают вокруг оси с шагом 45°. Измерения проводят при каждом положении передающей антенны и для каждой частоты измерения. Затем все измерения повторяют вновь при повороте приемной антенны на угол 90°.
Рассеивающие устройства считаются пригодными, если в результате их работы значение разности огибающих графика максимальных и минимальных значений затухания связи в камере не превышает 2 дБ при любом положении передающей антенны, и средние значения огибающих четырех графиков различаются не более чем на 2 дБ.
Зависимость затухания связи в камере от частоты для лопаточного рассеивающего устройства представлена на рисунке 13.