Контроль окружающей среды в крупных современных городах является одной из социально важных задач. От состояния окружающей среды зависят здоровье жителей города, производительность труда, полноценность отдыха и обучения. К числу факторов, определяющих качество окружающей среды, относятся шум и вибрация. Среди их многочисленных источников особое место занимают действующие линии метрополитена. Повышенные величины вибрации могут также негативно сказываться на состоянии зданий, коммуникаций и пр.
До настоящего времени не существовало корректной расчетной методики прогноза значений вибрации от действующих линий метрополитена. Это связано с тем, что механизм возбуждения вибрации изучен недостаточно. Прежде всего, это относится к взаимодействию в системе колесо-рельс и на внешней поверхности обделки тоннеля и излучению упругих волн в грунт. Грунт является довольно сложной средой, требующей записи громоздких моделей теории упругости и их трудоемкого численного анализа. В дополнение к математическим трудностям проблема осложняется неполнотой данных о геометрических характеристиках и упругих свойствах слоев грунта. В этом случае даже корректно сформулированные модели практически бесполезны вследствие их параметрической неопределенности. В силу этого использование традиционных численных подходов при моделировании распространения упругих волн, основанных на достаточно точных алгоритмах метода конечных элементов (МКЭ), метода граничных элементов (МГЭ), сеточных и вариационных подходах, приводит к избыточным вычислительным затратам при неизбежной потере точности из-за ошибок в задании параметров. Здесь же возникает и проблема выбора шага интегрирования исходных уравнений. Наличие в задаче процессов и объектов с существенно различными масштабами может привести к потере важных составляющих решения при некорректном задании численной сетки. Чрезмерная детализация может привести к недопустимому росту объема необходимых вычислений и ужесточению требований на производительность используемых ЭВМ. В настоящем Своде правил использован другой подход, основанный на использовании физически прозрачных моделей, включающих временное и пространственное осреднение рассматриваемых величин. Получаемые в результате эффективные значения входящих в модели параметров требуют дополнительной настройки, что и было выполнено в ходе натурных измерений на действующих линиях метрополитена. В дополнение к этому разработан метод, позволяющий оценивать геометрические и упругие свойства верхней части грунта для последующего использования в прямых расчетах. Таким образом, для оценки величин вибрации вблизи действующих линий метрополитена, а также в процессе проектирования и строительства необходимо использовать процедуру, изложенную в настоящем Своде правил. Для оценки исходных параметров используется раздел 4 настоящего Свода правил. Процедура оценки полученных величин вибрации на соответствие санитарным нормам описана в разделе 6. В случае если требования санитарных норм не выполняются, необходимо применение специальных мер по снижению избыточной вибрации в соответствии с положениями разделов 3 и 5 настоящего Свода правил.
Свод правил разработан "Тоннельной ассоциацией России" на основании проведенных научно-исследовательских работ, натурных экспериментальных исследований, обобщения опыта эксплуатации линий метрополитена и анализа литературных источников. В его основу положены соответствующие руководства, подготовленные Виброакустической лабораторией МОО "Тоннельная ассоциация" и прошедшие апробацию на линиях Московского метрополитена.
Настоящий Свод правил необходимо использовать при получении оценок величин вибрации в наземных зданиях и сооружениях, возникающих от движения поездов метрополитена на участках перегонных тоннелей, в пределах станций, камер съездов. Свод правил адаптирован к сложившимся в настоящее время принципам нормирования. В частности, в качестве основного оцениваемого параметра используются абсолютные значения виброскорости (м/с). Логарифмические единицы (уровни в дБ) также допускается использовать в качестве вспомогательных параметров.
Если исходные параметры для расчета вибрации не заданы, настоящий Свод правил следует использовать для определения динамических и диссипативных характеристик грунта (скоростей и коэффициентов затухания упругих волн) в различных естественных геологических и вызванных техногенными факторами условиях города. Знание указанных характеристик необходимо при прогнозировании величин вибрации в наземных зданиях и сооружениях, возникающих при движении поездов метрополитена, а также для оценки эффективности мероприятий по их виброзащите.
Согласно настоящему Своду правил динамические характеристики грунтов, необходимые для расчета абсолютных величин или уровней вибрации в зданиях, определяются в процессе геологических изысканий или по имеющимся стандартным табличным данным. Второй путь зачастую неприемлем из-за имеющегося большого разброса характеристик однотипных грунтов. Вследствие этого рекомендуется использовать прямые измерения на месте и основанные на них расчеты характеристик грунтов. Здесь представлена последовательность шагов, реализующих данный подход определения динамических параметров грунта для их последующего использования при расчетах виброакустической ситуации на поверхности.
Динамические свойства грунта будут характеризоваться скоростями продольных и поперечных упругих волн в твердой среде, а также связанными с ними динамическими модулями упругости (Юнга и Пуассона) и скоростью распространения поверхностных волн Рэлея. Диссипативные свойства характеризуются энергетическим коэффициентом затухания или связанным с ним амплитудным коэффициентом . Рассматриваются средние значения параметров для октавных диапазонов частот, при этом их величина может зависеть от частоты.
Настоящий Свод правил следует использовать для разработки средств виброзащитных мероприятий в конструкции верхнего строения пути метрополитена при необходимости снижения избыточной вибрации. Приводится порядок подбора требуемых характеристик виброзащитных устройств в зависимости от величины требуемого снижения вибрации, а также значений параметров грунта и характеристик тоннельной конструкции. В приложении З дается пример использования Свода правил в конкретной ситуации.
Настоящий Свод правил устанавливает методы измерения и оценки вибрации, генерируемой при движении поездов в метрополитенах, в помещениях жилых и общественных зданий, при определении степени воздействия вибрации на человеческий организм.
Измерения выполняют с целью контроля вибрации, генерируемой при движении поездов в метрополитенах, в помещениях жилых и общественных зданий, на соответствие допустимым уровням, установленным СНиП 32-02.
Свод правил предназначен для контроля вибрации, создаваемой в помещениях жилых и общественных зданий при движении поездов в метрополитенах, осуществляемого при приемке в эксплуатацию новых линий. Он входит в комплекс нормативных документов, подготовленных в связи с разработкой СНиП 32-02 "Метрополитены". Он может использоваться также при периодическом контроле действующих линий метрополитенов.
В Своде правил учтены требования и рекомендации основополагающих нормативно-технических документов: ГОСТ 12.1.012, СН 2.2.4/2.1.8.566-96, МР 2957-84 общетехнического характера. Вместе с тем в нем конкретизированы требования к виду и составу подлежащих измерению и контролю параметров вибрации исходя из временного характера и спектрального состава вибрации, генерируемой при движении поездов; определены требования к аппаратуре, условиям и правилам выполнения измерений; процедурам обработки результатов измерений и оценке их на соответствие допустимым значениям. При этом использован опыт, накопленный мировой практикой и отраженный в международном стандарте ИСО 2631/1* и немецком стандарте ДИН 4150/2.
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.
В разработке данного Свода правил принимали участие:
Зав. виброакустической лабораторией ТАР канд. техн. наук, ст. науч. сотр. С.А.Костарев - руководитель разработки; научный консультант ТАР д-р физ.-мат. наук, проф. С.А.Рыбак, гл. науч. сотр. ТАР канд. физ.-мат. наук С.А.Махортых, главный научный сотрудник ТАР д-р техн. наук, с.н.с., член-кор. Метрологической академии (раздел 6, приложения Д, И) И.Е.Цукерников.