Обширная информация о характере возникновения и накопления повреждений в железобетонных мостовых конструкциях делает возможным классификацию и разделение всех факторов, определяющих уровень сопротивляемости элементов конструкции, на две группы: - производственные факторы и факторы окружающей среды.
К производственным факторам относятся:
- качество конструктивных решений;
- уровень и качество изготовления и монтажа конструкций;
- гравитационные силы и силы трения, возникающие как от временной, так и от постоянной нагрузки;
- инерционные, центробежные усилия от временной нагрузки и др.
К факторам окружающей среды относятся:
- сейсмические силы, характер и режим их воздействия;
- физико-химические процессы, протекающие в материалах при изготовлении и эксплуатации;
- климатические воздействия;
- агрессивность воздушной и водной среды и др.
Допущенные при изготовлении и монтаже дефекты и повреждения, развиваясь в процессе эксплуатации, снижают работоспособность конструкции. Постепенное "старение" железобетонной конструкции и потеря его нормируемых качеств, вследствие необратимого накопления разного рода повреждений, проявляется в деградации структуры, снижении прочности бетона и образовании разного рода трещин. Начало и развитие этого процесса обусловлено большим, трудно обозримым количеством комбинаций воздействия вышеперечисленных факторов на элементы сооружения. Важнейшими из них являются: многократно повторяющиеся воздействия временных нагрузок, "отжимающих" (снижающих) запас релаксационных пластических свойств бетона, попеременное замораживание и оттаивание водонасыщенных зон конструкции, сезонные и суточные перепады температур воздуха, разного рода процессы коррозии, протекающие в бетоне вследствие карбонизации, капиллярной усадки, выщелачивания агрессивной влагой (с солями) цементного раствора и др.
Ухудшение эксплуатационных качеств конструкции проявляется также в снижении прочности бетона и уменьшении площади поперечных сечений бетонных элементов и арматурной стали в результате повреждения коррозией. Развитие таких повреждений, помимо прямого снижения несущей способности, может привести к потере сцепления арматуры с бетоном и, соответственно, к изменению расчетной статической схемы конструкции, увеличению прогибов и опасному дополнительному раскрытию трещин. Такой медленно протекающий процесс деградации, снижающий работоспособность конструктивных элементов сооружения, поддается наблюдению, расчетной оценке и может быть приостановлен. Расчетную работоспособность конструкции можно восстановить путем ремонта и усиления.
В настоящее время, в соответствии с нормами (СНиП, ГОСТ), методика контроля предупреждения усталостных процессов регламентирована только расчетом на выносливость, причем, по очень примитивной, далекой от реальной жизни сооружения модели воздействий временных нагрузок. Эта модель односторонне и приблизительно отражает процесс потери конструкцией ее свойств за условный период времени (порядка 80-100 лет). Представляется, что на достигнутом уровне понимания и проработки проблемы долговечности строительных материалов и конструкций, предлагаемая методология расчетного контроля срока службы, являясь интегральным инструментом оценки долговечности, способна значительно лучше оценить эффективность работы конструкции под всеми видами нагрузок и воздействий в течение установленного или требуемого времени ее эксплуатации.
Итак, методология расчетного контроля долговечности искусственных сооружений, в сочетании с грамотной и целенаправленной диагностикой позволяет:
- "перевооружить" всю систему эксплуатации мостов, для которой в настоящее время содержание, характер ремонта, межремонтные сроки, режим пропуска нагрузок устанавливаются на основании субъективных экспертных оценок опасных состояний;
- упорядочить экономические оценки мероприятий по поддержанию безопасного уровня эксплуатации мостов;
- планировать очередность и виды ремонтных работ, обеспечивая разумное распределение финансовых и материальных ресурсов в условиях жестких ограничений и малых возможностей служб эксплуатации.
Ожидаемая технико-экономическая эффективность предлагаемого подхода к расчетной оценке сроков службы железобетонных конструкций видится в следующем:
1. С определенной вероятностью может быть дана количественная оценка времени безопасной эксплуатации конструкции.
2. Опираясь на научно обоснованный анализ фактических данных о реальном поведении конструкции, возможен прогноз момента наступления разного рода отказов конструкции под нагрузками.
3. Пользуясь расчетным прогнозом (с учетом фактического состояния), можно оценивать запасы прочности и надежности для любого момента времени.
4. В период эксплуатации можно контролировать напряженное состояние и развитие деструктивных процессов, предупреждая аварийное состояние конструкции.
5. Открывается возможность корректировки и уточнения срока службы в ситуациях, когда изменяется режим эксплуатации сооружения (величина и цикличность временных нагрузок, динамические параметры и др.), а также обоснованно допускаемого увеличения интенсивности временных нагрузок, повышения скорости движения, но с учетом состояния конструкции по диагностическим данным, с расчетом и установкой уменьшенного, по сравнению с проектным, срока службы, т.е. обоснованного регулирования долговечности сооружения.
6. Предоставляется возможность обоснованного планирования сроков профилактических работ, а также межремонтных сроков.
7. Возможно определение режимов дальнейшей эксплуатации конструкции и прогноза ее срока службы после ремонта и реконструкции.
Во избежание чрезмерных ожиданий успеха от реализации предлагаемой Методики, следует понимать, что при существующем уровне знаний поведения железобетонных конструкций в эксплуатации, достоверность длительного (до 100 лет) прогноза срока службы таких капитальных сооружений как мосты, еще недостаточно высока. Здесь необходим целенаправленный и значительно больший объем информации о поведении мостовых сооружений в эксплуатации, чем, например, при оценке ресурса меньших механизмов. В последнем случае ресурс до наработки до отказа на порядок меньше, а информации о времени фактического износа меньших механизмов неизмеримо больше. Ожидать реального успеха от реализации предлагаемой Методики можно лишь при условии, что будут созданы и освоены автоматизированные расчетные комплексы, действующие совместно с банком данных, содержащим необходимый объем статистической информации о многочисленных видах "заболеваний" железобетонных мостовых конструкций в процессе эксплуатации.
Учитывая изложенное, "Росавтодор" поручил трем научным коллективам подготовить расчетную методику, которая давала бы возможность максимально приблизиться к поставленным целям и достичь упомянутых результатов. Настоящая Методика предполагает, что все необходимые расчеты будут выполняться с использованием расчетных комплексов, учитывающих различные исходные статистические параметры сооружений и позволяющих вести вычисления в диалоговом режиме. Разработчики располагают такими программами к ПЭВМ, построенными на базе требований СНиП 2.05.03.84* [1], которые могут оказать помощь в создании аналогичных комплексов в проектных организациях и дирекциях автомобильных дорог.