Профессиональные справочные системы
для специалистов строительной отрасли


ГОСТ 7329-91

Группа П69

     

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ИЗДЕЛИЯ ИЗ СТЕКЛА ХИМИКО-ЛАБОРАТОРНОГО И ЭЛЕКТРОВАКУУМНОГО

Метод поляризационно-оптического измерения разности хода лучей

Chemical laboratory and electrovacuum glassware. Polarizable and optical method of path-length difference measuring



ОКП 43 2000

Дата введения 1993-01-01

     

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством общего машиностроения СССР

РАЗРАБОТЧИКИ

Л.К.Захаров; А.С.Прокудина; В.Ф.Климова; Т.И.Зискис

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 07.08.91 N 1323

3. Срок проверки - 1995 г., периодичность проверки - 5 лет

4. ВЗАМЕН ГОСТ 7329-74

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта

ГОСТ 166-89

3.4

ГОСТ 6259-75

3.6

ГОСТ 6507-90

3.4

ГОСТ 8728-88

3.6

          

Настоящий стандарт распространяется на изделия из прозрачного бесцветного или слабо окрашенного химико-лабораторного и электровакуумного стекла и устанавливает метод поляризационно-оптического измерения разности хода лучей (разности хода), возникающей при прохождении через напряженное стекло линейно-поляризованного света и пропорциональной действующим напряжениям в стекле.

Термины, применяемые в настоящем стандарте, и их определения - в соответствии с приложением 1.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Метод основан на явлении двулучепреломления, которое наблюдается в напряженном стекле при прохождении через него луча линейно-поляризованного света и заключается в разложении луча на два - обыкновенный и необыкновенный, распространяющиеся с различными скоростями и вследствие этого имеющие при выходе из напряженного стекла разность хода.

Метод включает качественное, полуколичественное и количественное определение напряжения, исходя из разности хода поляризованного света, проходящего через образец.

1.2. Метод предусматривает испытание одним из нижеприведенных способов.

1.2.1. Качественные и полуколичественные способы

Испытание проводят способом сравнения, который состоит в оценке на полярископе общего распределения напряжений в изделии и в оценке значения разности хода:

или по сравнению наблюдаемого цвета исследуемого места с данными таблицы интерференционных цветов;

или по сравнению наблюдаемого цвета с соответствующим цветом правильно ориентированного ступенчатого клина или же одинакового изделия с количественно оцененными разностями хода на обозначенных местах.

1.2.2. Количественные способы

Испытание проводят способом компенсации, который состоит в количественном определении значения разности хода с помощью поляриметра, снабженного компенсатором. В качестве компенсатора применяют фазовую пластинку /4 с поворотным анализатором (компенсатор Сенармона).

1.3. Измерения разности хода проводят в местах изделия с максимальными напряжениями.

2. ТРЕБОВАНИЯ К ОБРАЗЦАМ

2.1. В зависимости от конструкции и размеров стеклянных изделий испытанию подвергают готовые изделия или образцы, вырезанные из них. Вырезанные образцы должны иметь максимальные размеры, которые могут быть измерены на данной аппаратуре.

2.2. Количество и вид образцов и участки изделий, в которых должны проводиться испытания, для каждого вида изделий устанавливают в нормативно-технических документах.

3. СРЕДСТВА ИЗМЕРЕНИЯ

3.1. Полярископ-поляриметр

Принципиальная оптическая схема показана на черт.1.


1 - источник света; 2 - матовое стекло; 3 - поляризатор; 4 - испытуемый образец; 5 - фазовая пластинка /4; 6 - анализатор; 7 - фазовая пластинка .

Черт.1

          

Предел допускаемой основной погрешности при измерении разности хода на полярископе-поляриметре равен ±10 нм.

Примечание. Измерение разности хода допускается проводить на поляриметре с другой схемой, если погрешность измерения не превышает вышеуказанную.

3.2. Ступенчатые клинья - в соответствии с приложением 2, черт.2.

3.3. Неотожженный стержень из стекла круглого сечения диаметром от 4 до 8 мм, длиной от 100 до 150 мм и отожженный стержень из стекла прямоугольного сечения с диагональю сечения от 5 до 8 мм, длиной от 100 до 150 мм.

3.4. Штангенциркуль по ГОСТ 166 с отсчетом по нониусу 0,1 мм, микрометр по ГОСТ 6507 или специальный цанговый измеритель толщины или толщиномер по нормативно-технической документации. Относительная погрешность измерения толщины стенки образцов ±5%.

3.5. Кювета для иммерсионной жидкости из прозрачного материала с плоскопараллельными стенками и размерами, позволяющими погрузить в нее исследуемое стеклоизделие. Стенки кюветы не должны иметь напряжение.

3.6. Иммерсионные жидкости приведены в табл.1.

Таблица 1

Наименование иммерсионной жидкости

Коэффициент преломления

Обозначение документа

Глицерин

1,47

ГОСТ 6259

Диметилфталат-пластификатор

1,51

ГОСТ 8728

Масло анисовое

1,56

Нормативно-технический документ

Керосин

1,42

То же

3.7. Волосяная кисть для нанесения иммерсионной жидкости на поверхность образцов и стеклянные пластинки, не имеющие напряжений.

4. ПОДГОТОВКА К ИЗМЕРЕНИЮ

4.1. Подготовка образцов

4.1.1. Температура образцов и иммерсионной жидкости должна быть до измерения выравнена с комнатной температурой.

Образцы до испытания и в процессе испытания не должны нагреваться (например, рукой) и испытывать механические нагрузки.

4.1.2. При измерении разности хода в местах изделий, которые сильно рассеивают или преломляют свет, изделие помещают в кювету с иммерсионной жидкостью или смачиваются ею.

4.2. Подготовка полярископа-поляриметра

Полярископ-поляриметр может работать как полярископ и как поляриметр.

4.2.1. Полярископ-поляриметр должен быть установлен в защищенном от яркого света месте.

4.2.2. Перед началом испытаний следует определить соответствие между знаком напряжения ("плюс" - растяжение, "минус" - сжатие) при одноосном напряженном состоянии и цветом, наблюдаемым в полярископе-поляриметре.

В том случае, если полярископ-поляриметр работает как полярископ, в поле зрения полярископа помещают неотожженный стержень и вращают его до появления в нем наиболее интенсивной окраски. Цвет стержня при просмотре должен соответствовать напряжению растяжения, направленному по длине стержня.

Для определения знака напряжения может быть использован отожженный стержень, подвергнутый изгибу в руках при просмотре на полярископе-поляриметре, или ступенчатый клин.

Разность хода, наблюдаемая в ступенчатом клине, должна соответствовать напряжению сжатия, направленному по длине клина.

Соответствие наблюдаемой окраски, направления и знака напряжения должно быть отмечено указателями цвета в соответствии с приложением 3, черт.3.

Если полярископ-поляриметр работает как поляриметр, то поворачивают лимб анализатора так, чтобы при наименьшем угле поворота получилось затемнение в средней части стержня. Направление вращения лимба анализатора при данном положении стержня соответствует напряжению растяжения, направленному вдоль длины стержня.

Соответствие между знаком, направлением напряжений и направлением вращения анализатора должно быть отмечено указателями на полярископе в соответствии с приложением 4, черт.4.

5. ПРОВЕДЕНИЕ ИЗМЕРЕНИЯ

5.1. Предварительное испытание

Подготовленные образцы сначала просматривают в темном поле полярископа или в поляриметре без светофильтра и с анализатором в нулевом положении. Находят место с наибольшей разностью хода. Если в поле зрения появится красная полоса, то разность хода превышает 540 нм и в дальнейшем измерение проводят согласно п.5.3. Если в поле зрения нет красных полос, то измерение проводят согласно п.5.2.

5.2. Проведение испытания при разности хода менее 540 нм

5.2.1. Качественные и полуколичественные способы

Измерение разности хода с применением ступенчатого клина проводят двумя методами: сравнением и компенсацией.

5.2.1.1. При измерении значения разности хода лучей методом сравнения следует образец и ступенчатый клин поместить в поле зрения полярископа так, чтобы изменение цвета интерференционной окраски в образце и клине при возрастании разности хода происходило в такой последовательности: от синего через зеленый к желтому или от красного через оранжевый к желтому.

Разность хода в образце определяют сравнением цвета испытуемого участка образца с цветом различных ступеней клина. Если цвет одной ступени клина близок или совпадает с цветом испытуемого участка образца, то разность хода в образце принимают равной разности хода в этой ступени клина.

Если цвет проверяемого участка образца окажется промежуточным между цветами соседних ступеней клина, то разность хода принимают равной половине суммы разностей хода в этих ступенях.

5.2.1.2. При измерении значения разности хода методом компенсации следует образец и ступенчатый клин поместить в поле зрения полярископа так, чтобы последовательность наблюдаемых цветов клина и образца не совпадали. Клин располагают над образцом или под ним, так, чтобы просмотр можно было проводить одновременно сквозь клин и образец. При этом в испытуемом участке образца происходит компенсация разности хода лучей. Значение разности хода уменьшается по сравнению с первоначальным значением в образце. Клин перемещают в направлении длинной стороны так, чтобы проверяемый участок образца находился последовательно против различных ступеней клина. Окраску, создаваемую совместно цветом клина и цветом образца, сопоставляют с окраской свободного поля полярископа.

Разность хода в образце принимают равной разности хода в той ступени клина, цвет которой совместно с цветом проверяемого участка образца дает окраску свободного поля полярископа или окраску, близкую к нему.

Если значения компенсации будут находиться между результатами ступеней клина, то разность хода в образце принимают равной половине значения суммы разностей этих ступеней.

Погрешность метода измерения разности хода с применением ступенчатого клина не должна быть более:

±5 нм - при максимальной разности хода от 10 до 100 нм;

±10-15 нм - при максимальной разности хода свыше 100 нм.

5.2.1.3. При измерении разности хода с применением таблицы интерференционных цветов изделие помещают в поле полярископа и, поворачивая, находят места в контролируемой части изделия с наиболее интенсивными интерференционными цветами.