• Текст документа
  • Статус
Оглавление
Поиск в тексте
Документ в силу не вступил


ГОСТ Р ИСО 13703-2018

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Нефтяная и газовая промышленность

ПРОЕКТИРОВАНИЕ И МОНТАЖ ТРУБОПРОВОДНЫХ СИСТЕМ НА МОРСКИХ ДОБЫВАЮЩИХ ПЛАТФОРМАХ

Petroleum and natural gas industries. Design and installation of piping systems on offshore production platforms

ОКС 75.200

Дата введения 2019-04-01

Предисловие

1 ПОДГОТОВЛЕН Открытым акционерным обществом "Нефтяная компания "Роснефть" (ОАО "НК "Роснефть") и Обществом с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" (ООО "Газпром ВНИИГАЗ") на основе русской версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 23 "Нефтяная и газовая промышленность"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 ноября 2018 г. N 1007-ст

4 Настоящий стандарт идентичен международному стандарту ИСО 13703:2000 "Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах" (ISO 13703:2000 "Petroleum and natural gas industries - Design and installation of piping systems on offshore production platforms", IDT), включая техническую поправку Cor.1:2002.
________________
     * Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт http://shop.cntd.ru. - Примечание изготовителя базы данных.      
     
     

Сведения о соответствии применяемых в стандарте марок стали российским приведены в дополнительном приложении ДА.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДБ

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение

Настоящий стандарт разработан на основе требований морской нефтегазодобывающей промышленности по определению гармонизированных и совместимых методов проектирования и монтажа трубопроводных систем на морских добывающих платформах.

В настоящем стандарте определяются требования на проектирование и монтаж трубопроводных систем на морских добывающих платформах нефтяной и газовой промышленности; приведены требования к материалам, выбору клапанов, фитингов и фланцев.

Международный стандарт разработан техническим комитетом ISO/TC 67 "Материалы, оборудование и морские платформы для нефтяной, нефтехимической и газовой промышленности", подкомитетом SC 6 "Технологическое оборудование и системы".

В приложении A приводятся некоторые практические примеры решения проблем проектирования трубопроводов. Это приложение рекомендуется использовать вместе с основной частью настоящего стандарта. Нумерация разделов в приложении А соответствует нумерации разделов в основной части стандарта для облегчения использования перекрестных ссылок.

В приложении B приведен перечень таблиц труб, клапанов и фитингов.

В приложении C приведена приемлемая конструкция сварных соединений встык для труб с разной толщиной стенки.

В настоящем стандарте была сохранена оригинальная система нумерации рисунков, таблиц и уравнений.

1 Область применения

Настоящий стандарт устанавливает минимальные требования и является руководством по проектированию и монтажу новых трубопроводных систем на морских добывающих платформах в нефтяной и газовой промышленности. Он предназначен для трубных систем с максимальным давлением до 69 МПа в пределах диапазона температур материалов, соответствующих требованиям ASME B31.3.

Примечания

1 Настоящий стандарт могут применять за пределами данных диапазонов давлений и температур, но в этом случае особое внимание уделяют свойствам материала.

2 Настоящий стандарт не распространяется на вопросы обеспечения пожарной безопасности.

В приложении A приведены некоторые практические примеры решения проблем проектирования трубопроводов.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие документы*:

_______________
     * Таблицу соответствия национальных стандартов международным см. по ссылке. - Примечание изготовителя базы данных.     
     
         

ISO 13623, Petroleum and natural gas industries. Pipeline transportation systems (Нефтяная и газовая промышленность. Трубопроводные системы транспортировки)

API RP 520-2, Recommended practice for design and installation of pressure-relieving systems in refineries - Part 2 (Рекомендации по проектированию и монтажу систем сброса давления на нефтеперерабатывающих заводах. Часть 2)

ASME, Boiler and pressure vessel code: Section VIII: Pressure vessels, Division 1 (Нормы по котлам и сосудам высокого давления. Раздел VIII. Емкости под давлением. Часть 1)

ASME B 31.3, Process piping (Технологические трубопроводы)

NACE MR0175, Sulfide stress cracking resistant metallic materials for oil field equipment (Металлические материалы, стойкие к сульфидному растрескиванию под напряжением, используемые в нефтепромысловом оборудовании)

NACE TM0177, Laboratory testing of metals for resistance to specific forms of environmental cracking in ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах environments (Лабораторные испытания стойкости металлов к сульфидному растрескиванию под напряжением и коррозионному растрескиванию под напряжением в ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах-содержащих средах)

NACE TM0284, Evaluation of pipeline and pressure vessel steels for resistance to hydrogen-induced cracking (Оценка стойкости к водородному растрескиванию сталей для трубопроводов и сосудов под давлением)

3 Термины, определения, обозначения и сокращения

3.1 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1.1 выкидной трубопровод (flowline): Трубопровод, по которому транспортируется флюид от устья скважины к манифольду или к первому технологическому резервуару.

3.1.2 давление на устье скважины (wellhead pressure): Максимальное статическое давление на устье скважины, которое может иметь место в скважине.

3.1.3 датчик давления (pressure sensor): Устройство, предназначенное для контроля заданного давления.

3.1.4 запорный клапан (shutdown valve): Клапан c автоматическим приводом для отсоединения технологического компонента или технологической системы.

3.1.5 коллектор (header): Часть распределительного манифольда, который направляет флюид в определенную технологическую систему.

Примечание - См. рисунки 5 и 6.

3.1.6 компонент технологического процесса (process component): Отдельный функциональный компонент добычного оборудования и связанной с ним трубной системы.

Примеры - Сосуд, работающий под давлением, нагреватель, насос и т.д.

3.1.7 коррозионный газ (corrosive gas): Газ, который при растворении в воде или в другой жидкости вызывает коррозию металла.

Примечание - Коррозионные газы обычно содержат сероводород (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах), углекислый газ (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах) и/или кислород (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах).

3.1.8 коррозионная эрозия (corrosion-erosion): Эрозия защитной пленки продукта от коррозии в результате воздействия технологического потока, открывающего не корродированный металл, который, в свою очередь, подвергается коррозионному воздействию.

Примечание - В этих условиях возможна особо высокая интенсивность потери массы металла.

3.1.9 манифольд (manifold): Система труб, клапанов и фитингов, при помощи которых флюид от одного или нескольких источников избирательно направляется в различные технологические системы.

3.1.10 номинальное давление (pressure rating): Значение, на которое рассчитана система.

Примечание - Это значение может напрямую относиться к номинальному рабочему давлению (например, по [1] номинальное давление равно 13,8 МПа и по API номинальное давление равно 2000 psi) или связано косвенно (например, класс 300 по ASME).

3.1.11 номинальный размер трубы (NPS), номинальный размер (DN) (nominal pipe size, nominal size): Обозначение размера в дюймах, который является общим для всех компонентов трубной системы, за исключением тех элементов, которые обозначаются наружным диаметром.

Примечание - Номинальный размер трубы обозначается буквами NPS (при использовании дюймов) или DN (при использовании миллиметров) и следующим за ними числом; такое обозначение используется для удобства ссылок и, как правило, лишь приблизительно отражает заводские размеры.

3.1.12 нормальные условия (normal conditions): Абсолютное давление 0,101325 МПа при температуре 0°C.

3.1.13 работа в условиях сульфидного растрескивания под напряжением (sulfide stress-cracking service): Работа в условиях, при которых технологический поток содержит воду или соляной раствор и сероводород (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах) в концентрации, достаточной для того, чтобы вызвать сульфидное растрескивание под напряжением восприимчивых к этому материалов.

3.1.14 работа в условиях хлоридного коррозионного растрескивания под напряжением (chloride stress-corrosion cracking service): Работа в условиях, при которых технологический поток содержит воду и хлориды в достаточной концентрации и его температура достаточно высокая для того, чтобы вызвать коррозионное растрескивание под напряжением восприимчивых к этому материалов.

Примечание - Наличие других компонентов, таких как кислород (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах), может способствовать хлоридному коррозионному растрескиванию под напряжением.

3.1.15 работа с коррозионным углеводородом (corrosive hydrocarbon service): Работа в условиях, при которых технологический поток содержит воду или соляной раствор, углекислый газ (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах), сероводород (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах), кислород (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах) или другие коррозионные компоненты, в условиях, которые вызывают коррозию металла.

3.1.16 работа с некоррозионным углеводородом (non-corrosive hydrocarbon service): Работа в условиях, при которых технологический поток не вызывает значительных потерь массы металла, избирательной коррозии, хлоридного коррозионного растрескивания или сульфидного растрескивания под напряжением.

3.1.17 режим потока (flow regime): Условия течения многофазного технологического потока.

Пример - Глобулярное течение, смешанный режим или расслоенный режим потока.

3.1.18 сильфонный компенсатор (expansion bellows): Гофрированное устройство на трубопроводе, предназначенное для компенсации его расширения и сжатия.

3.1.19 соединительный патрубок (nipple): Секция трубы с резьбой или с приварным раструбом длиной не более 300 мм, используемая в качестве дополнительного соединения.

3.1.20 стояк (riser): Вертикальная часть трубопровода (включающая донный его отвод), подходящая к платформе или отходящая от нее.

3.1.21 температурный компенсатор (expansion bend): Конфигурация трубопровода, предназначенная для компенсации его расширения и сжатия.

3.1.22 трубная обвязка платформы (platform piping): Любая трубная система, предназначенная для содержания или транспортировки флюидов на платформе.

3.1.23 углеводородная смачиваемость (hydrocarbon wettability): Способность технологического потока создавать защитную углеводородную пленку на металлических поверхностях.

3.1.24 флюид (fluid): Газ, пар, жидкость или их комбинация.

3.1.25 штуцер (choke): Устройство, специально предназначенное для ограничения расхода флюидов.

3.2 Обозначения и сокращения

3.2.1 В настоящем стандарте применены следующие обозначения:

A

-

минимальная площадь поперечного сечения трубы на единицу объемного расхода флюида, ммГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформахГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах/ч;

B

-

среднее значение коэффициента теплового расширения при обычных рабочих температурах, мм/К;

C

-

эмпирическая постоянная;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

суммарная коррозия, которую допускает механическая прочность и трубная резьба, мм;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

коэффициент расхода клапана.

Примечание 1 - Это значение равно расходу воды в галлонах США в минуту при 60°F, необходимое для падения давления на 1 psi (единицы измерения США используются в этом случае только для того, чтобы обеспечить соответствие с другими опубликованными данными);


     

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

внутренний диаметр трубы, м;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

наружный диаметр трубы, мм;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

внутренний диаметр трубы, мм;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

относительная плотность газа (для воздуха равная 1);

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

относительная плотность жидкости (для воды равная 1);

E

-

продольный фактор сварного соединения;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

модуль упругости материала труб в холодных условиях, Н/ммГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

коэффициент трения Муди (Moody);

g

-

ускорение свободного падения, м/сГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

напор жидкости, вызванный ускорением, м;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

потери напора жидкости на трение, м;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

абсолютный напор жидкости, м;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

статический напор жидкости, м;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

скоростной напор жидкости, м;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

абсолютное давление жидкости насыщенного пара, м;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

потери давления, кПа;

K

-

коэффициент ускорения;

L

-

осевая длина труб, м;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

длина труб, км;

m

-

заводской допуск на толщину стенки,%;

NPSHa

- фактический допускаемый кавитационный запас жидкости, м;

p

-

абсолютное рабочее давление, кПа.

Примечание 2 – В тексте также используется термин "гидродинамическое давление";


     

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

манометрическое расчетное внутреннее давление, кПа;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

расход газа в нормальных условиях, мГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах/ч;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

расход жидкости, мГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах/ч;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

суммарный расход жидкости плюс масса пара, кг/ч;

R

-

объемное соотношение газ/жидкость;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

число Рейнольдса;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

скорость вращения насоса, об/мин;

S

-

допустимое напряжение, Н/ммГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах;

T

-

рабочая температура, К.

Примечание 3 - В тексте также используется термин "температура потока";

t

-

расчетная толщина с учетом давления, мм;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

минимальная номинальная толщина стенки трубы, мм;

U

-

анкерное расстояние (расстояние по прямой между анкерами), м;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

эрозионная скорость флюида, м/с;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

-

средняя скорость газа, м/с.

Примечание 4 - В тексте также используется термин "скорость газа";


     

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

- средняя скорость жидкости, м/с;

у

- результирующая суммарных деформационных смещений, мм;

Y

- температурный коэффициент;

Z

- коэффициент сжимаемости газа;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

- расширение, компенсируемое трубопроводом, мм;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

- потери давления, кПа;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

- плотность газа при рабочих давлении и температуре, кг/мГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

- плотность жидкости при рабочей температуре, кг/мГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

- плотность смеси газа/жидкости при рабочих давлении и температуре, кг/мГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

- изменение температуры, К;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

- вязкость газа при динамическом давлении и температуре потока, Па·с;

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

- вязкость жидкости, Па·с.

3.2.2 В настоящем стандарте применены следующие сокращения:

AISI (American Institute of Steel and Iron) - Американский институт черной металлургии;

API (American Petroleum Institute) - Американский нефтяной институт;

ASME (American Society of Mechanical Engineers) - Американское общество инженеров-механиков;

ERW (Electric Resistance Weld) - контактная электросварка;

PWTH (Post-Weld Heat Treatment) - тепловая обработка после сварки;

RF (Raised Face) - выступающая поверхность;

RTJ (Ring Type Joint) - кольцеобразное соединение;

SAW (Submerged Arc Weld) - дуговая сварка под флюсом;

SMYS (Specified Minimum Yield Strength) - заданный минимальный предел текучести материала;

WOG (Water, Oil and Gas) - вода, нефть и газ;

WPB (Weldless Pipe Branch) - бесшовный отвод.

4 Общие положения

4.1 Материалы

Материалы на основе углеродистой стали используют для многих трубопроводных систем на эксплуатационных платформах, в то же время широко используют нержавеющие стали и другие материалы. При выборе материалов труб учитывают:

a) вид работы;

b) совместимость с другими материалами;

c) механическую прочность, пластичность, упругость и ударную вязкость;

d) необходимость особых технологий сварки и других типов соединения;

e) необходимость специальных видов контроля, испытаний и контроля качества;

f) возможность неправильного использования на месте эксплуатации;

g) коррозию и эрозию, вызываемые внутренними флюидами и/или морской средой;

h) необходимость сохранения эксплуатационных характеристик при возникновении пожара.

4.2 Нормы для трубопроводов под давлением

4.2.1 Проектирование и монтаж трубопроводов на платформе осуществляют в соответствии с ASME B31.3 с учетом изменений, приведенных в настоящем стандарте. Стояки, для которых ASME B31.3 не применим, проектируют и устанавливают в соответствии с положениями, приведенными в 4.2.2-4.2.6.

4.2.2 Проектирование, монтаж, контроль и испытание стояков проводят в соответствии с ИСО 13623 и государственными нормативно-техническими документами, применимыми к данному случаю, не превышая при этом расчетных напряжений 0,6 SMYS. Правила проектирования трубопровода используют от одной камеры приема/пуска внутритрубных снарядов до другой, везде, где они не противоречат национальным нормативам.

4.2.3 Сварные соединения стояка подвергают 100%-ному рентгенографическому неразрушающему контролю. Результаты неразрушающего контроля трубопроводов платформы по ASME B31.3 должны как минимум соответствовать таблице 10.

4.2.4 Испытания на ударную вязкость проводят в соответствии с ASME B31.3. Проектирование высоконапорных систем трубопроводов (т.е. выше класса 2500 по ASME) требует проведения особого анализа и осуществляется в соответствии с требованиями ASME B31.3 для высоконапорных трубопроводов.

4.2.5 Клапаны, фитинги и фланцы изготовляют в соответствии с международными и/или национальными стандартами. Подтверждают рабочие диапазоны давления и температуры, а также совместимость материалов.

4.2.6 При определении переходных участков между стояками и трубной обвязкой платформы, к которым применимы настоящие положения, применимость настоящего стандарта ограничена участками от первого входного до последнего выходного клапана, блокирующих поток трубопровода, за исключением расчетов по определению толщины стенки и выбора материала стояка, которые проводят в соответствии с нормами для трубопровода, что позволяет иметь постоянное проходное сечение, необходимое для работы внутритрубными снарядами. Практические рекомендации настоящего стандарта могут использоваться при проектировании стояков, если при этом учитывают такие параметры, как глубина воды, наклон опор платформы, возможная площадь барботажа и т.д. Национальное законодательство может требовать расширения области применения требований для трубопровода от/до камеры приема/пуска внутритрубных снарядов.

4.2.7 Обычной практикой является также применение норм для трубопровода к стояку до камеры приема/пуска внутритрубных снарядов, включая трубы и первый клапан каждого отвода стояк/трубопровод.

4.3 Разграничение систем с разными расчетными давлениями

4.3.1 Падение давления после выхода потока из устья скважины обычно происходит поэтапно. После того как давление сброшено, используют технологические компоненты с меньшими расчетными давлениями, приведенными на рисунке 1.

4.3.2 Технологический компонент под давлением проектируют на стойкость по отношению к максимальному внутреннему давлению, действию которого его подвергают в любых возможных условиях, или предохраняют устройством сброса давления. В этом случае под устройством сброса давления имеют в виду предохранительный клапан или разрывной диск. В общем случае при решении вопроса о необходимости установки устройств сброса давления не рассматривают запорные клапаны высокого давления, обратные клапаны, регулирующие клапаны и другие аналогичные устройства в качестве устройств, предохраняющих технологические компоненты от повышенного давления.

4.3.3 Диапазоны расчетных давлений указывают на трубопроводных и контрольно-измерительных схемах. Каждый компонент системы (резервуары, фланцы, трубы или вспомогательные приспособления) проектируют на стойкость по отношению к максимальному давлению, которому его подвергают в любых прогнозируемых условиях, либо предохраняют устройством сброса давления. Рассматривают условия аномально высокого давления, например условия пуска, остановки, гидравлического удара и т.д.

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

1 - верхняя главная фонтанная задвижка; 2 - устье скважины; 3 - боковой штуцер; 4 - фонтанный тройник; 5 - манифольд; 6 - стопорный клапан; 7 - к другим системам; 8 - предохранительный клапан давления; 9 - сепаратор высокого давления; 10 - газовый отвод; 11 - контроллер уровня; 12 - сепаратор среднего давления; 13 - сепаратор низкого давления; 14 - обработка, хранение или продажа

Примечания

1 Расчетная температура одинакова и составляет 65°C.

2 Необходимые датчики останова не показаны.

3 Напорный трубопровод и манифольд рассчитаны на устьевое давление.

4 Расчетные давления в системе ограничивают факторами, отличными от классификации давления на фланце и клапане (например, толщина стенки трубы, расчетное давление сепаратора и т.д.).

5 Изолирующие клапаны устанавливают только там, где после них по потоку установлены резервные предохранительные клапаны, и, более того, все изолирующие клапаны должны быть взаимно заблокированы для того, чтобы система под давлением была постоянно защищена.


     

Рисунок 1 - Пример технологической системы, иллюстрирующий изменение расчетных давлений для фланцев и клапанов

4.4 Коррозионный анализ

4.4.1 Общие положения

Подробные практические рекомендации по борьбе с коррозией трубопроводных систем платформ не входят в область применения настоящего стандарта. Обычно такие рекомендации разрабатывают специалисты по коррозии. Тем не менее трубопроводные системы платформы проектируют в соответствии с описанными ниже инструкциями по контролю коррозии. Рекомендации по коррозионно-стойким материалам и инструкции по снижению коррозии приведены в соответствующих разделах настоящего стандарта.

Коррозионную активность технологических потоков меняют во времени. Вероятность изменения условий учитывают на стадии проектирования.

4.4.2 Потеря массы из-за коррозии

В определенных технологических условиях системы трубопроводов из углеродистой стали подвергают воздействию коррозии. На этапе добычи технологические потоки, содержащие воду, соляной раствор, углекислый газ (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах), сероводород (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах), кислород (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах) или их смеси, вызывают коррозию металлов, которые используют в компонентах системы. Типы коррозионного воздействия (равномерная потеря массы, точечная коррозия, коррозионная эрозия и т.д.) так же, как и интенсивность конкретных видов коррозии, меняют во времени. Коррозионная активность технологического потока зависит от многих факторов, в числе которых:

a) содержание углеводорода, воды, соли и коррозионного газа;

b) углеводородная смачиваемость;

c) скорость потока, режим потока и конфигурация трубопровода;

d) температура, давление и значение pH;

e) содержание твердых частиц (песок, буровой раствор, бактериальный шлам и микроорганизмы, продукты коррозии и твердый осадок на стенках).

Прогнозные оценки коррозионной активности имеют весьма качественный характер и могут быть различными для каждой системы. Некоторые сведения о коррозионной активности газов, содержащихся в потоках при добыче, приведены в таблице 1.

Таблица 1 предназначена лишь для того, чтобы дать общее руководство при рассмотрении вопроса о снижении коррозии, а не для конкретных прогнозных оценок коррозионной активности. Ингибирование коррозии является эффективным инструментом для снижения коррозии, если прогнозируются или ожидаются коррозионные условия (см. 5.1.2).

Таблица 1 - Качественная оценка потери массы стали из-за коррозии

Коррозионный газ

Коэффициент

Предельные значения в соляном растворе при

растворимостиГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

отсутствии коррозии

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

коррозии

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

Кислород (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах)

8

<0,005

>0,025

Углекислый газ (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах)

1700

<600

>1200

Сероводород (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах)

3900

См. примечание

См. примечание

Примечание - Предельные значения потери массы из-за коррозии для сероводорода в данной таблице не приводятся, т.к. в этом случае содержание углекислого газа и/или кислорода существенно влияет на интенсивность коррозии. Из-за образования нерастворимой пленки из сульфида железа, способствующей уменьшению потери массы из-за коррозии, отдельно сероводород обычно не так коррозионно активен, как углекислый газ.

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах Объемный коэффициент растворимости. Растворимость в дистиллированной воде при 20°C и парциальном давлении 0,101325 МПа (1 атм). Для кислорода (ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах) атмосферное давление воздуха равно 0,101325 МПа (1 атм) [2].

4.4.3 Хлоридное коррозионное растрескивание под напряжением

Особое внимание уделяют анализу напряжений и содержанию хлоридов, если для предотвращения коррозии в присутствии сероводорода и/или углекислого газа выбирают легированные или нержавеющие стали. Технологические потоки, содержащие воду с хлоридами, могут вызвать растрескивание восприимчивых к этому явлению материалов, особенно в присутствии кислорода и при температурах свыше 60°C. Высоколегированные и нержавеющие стали, такие как аустенитная нержавеющая сталь AISI серия 300, дисперсионно твердеющая нержавеющая сталь и "А-286" (марка 660 по [3]), не используют, если их пригодность к использованию в предполагаемых условиях не была должным образом подтверждена. Также анализируют возможность концентрации хлоридов на локализованных участках системы.

4.4.4 Сульфидное растрескивание под напряжением

Технологические потоки, содержащие воду и сероводород, могут вызвать сульфидное растрескивание под напряжением у восприимчивых к этому материалов. Это явление является результатом сложного взаимодействия параметров, к числу которых относятся химический состав металла, твердость и микроструктура, условия тепловой обработки, а также такие факторы, как pH, концентрация сероводорода, напряжение и температура. Материалы, которые используют для технологических потоков, содержащих сероводород, выбирают с учетом пригодности к работе в данных условиях.

Испытания этих материалов проводят в соответствии с NАСЕ TM0177.

4.4.5 Применение NACE MR0175

Материалы, выбираемые для борьбы с сульфидным растрескиванием под напряжением, должны соответствовать NАСЕ TM0177. Коррозионно-стойкие сплавы, не входящие в список NАСЕ TM0177, могут быть пригодными к работе в данных условиях и могут использоваться в случае, если подтверждена их коррозионная стойкость в заданных условиях (или в эквивалентных лабораторных условиях). Проявляют осторожность также при использовании материалов из списка NАСЕ TM0177. Приведенные там материалы могут быть стойкими по отношению к сульфидному растрескиванию под напряжением, но оказаться непригодными для работы в условиях хлоридного растрескивания под напряжением.

4.4.6 Водородное растрескивание

Технологические потоки, содержащие воду и сероводород, могут вызвать водородное растрескивание (HIC) восприимчивых к этому материалов, особенно изделий из углеродистой листовой стали или труб, изготовленных из листового проката. Предусматривают испытания подобных материалов на HIC в соответствии с NACE TM0284.

5 Проектирование трубопроводов

5.1 Марки материалов для труб

5.1.1 Эксплуатация в отсутствие коррозионного углеводорода

Двумя наиболее часто используемыми марками материалов труб из углеродистой стали являются ASTM A 106 марка B [4], API 5L марка B [5] и ИСО 3183-1 [6]. Обычно из-за однородности качества используют бесшовные трубы. Трубы по [4] выпускают только в бесшовном варианте, тогда как по [5] - в бесшовном, ERW и SAW. Если при использовании марки B требуется значительное утолщение стенки, может возникнуть необходимость использования труб с повышенным допустимым расчетным напряжением, таких как марки X52 [5]. Однако при использовании марок X46 [5] и выше требуются особые технологии сварки и тщательный ее контроль. Применение материалов с высоким пределом текучести, таких как марки X [5], не приведет к пропорциональному увеличению допустимых значений напряжения при соблюдении ASME B31.3.

Многие из марок труб, приведенные в ASME B31.3, пригодны для работы при отсутствии коррозионного углеводорода. В соответствии с ASME B31.3 следующие типы или марки труб были специально исключены из списка пригодных к работе при наличии углеводорода:

a) печная сварка внахлестку или встык;

b) сваренные плавлением согласно [7] или [8];

c) спирально-шовные, кроме [5].

5.1.2 Эксплуатация при наличии коррозионного углеводорода

При проектировании для эксплуатации при наличии коррозионного углеводорода необходимо предусмотреть использование одного или нескольких из указанных ниже методов борьбы с коррозией:

a) химическая обработка;

b) антикоррозийные сплавы;

c) защитные покрытия (см. 9.5.2).

Из них на практике традиционно используют химическую обработку флюида, контактирующего с углеродистой сталью. Используются и антикоррозийные сплавы, успешно применявшиеся в аналогичных условиях (или прошедшие соответствующие лабораторные испытания), но в этом случае особое внимание уделяют технологии сварки. Также учитывают вероятность возникновения сульфидного растрескивания под напряжением и хлоридного коррозионного растрескивания под напряжением (см. 4.4.3 и 4.4.4). Необходимо обеспечить эффективный мониторинг коррозии (испытательные образцы, зонды, катушки и т.д.) и химической обработки.

Поскольку сварка может значительно изменить сопротивляемость коррозии антикоррозионных материалов, обращают особое внимание на технологию сварки.

5.1.3 Эксплуатация при наличии сульфидного растрескивания под напряжением

Если предполагается сульфидное растрескивание под напряжением, то при выборе труб необходимо руководствоваться следующим:

a) использовать только бесшовные трубы, если при изготовлении ERW или SAW труб не были предусмотрены технические условия и контроль качества, необходимые для данного вида работ;

b) углеродистые и легированные стали, а также другие материалы используют в условиях сульфидного растрескивания под напряжением, если их свойства, твердость, тепловая обработка и другие требования соответствуют NACE MR0175.

Из марок труб, удовлетворяющих указанным принципам, чаще всего используют марку B [4], марку 6 [9] и бесшовную марку B [5]. Используют марки X [5], однако их сварка сопряжена с определенными проблемами.

5.1.4 Сопротивляемость хрупкому разрушению

Для обеспечения необходимой сопротивляемости хрупкому разрушению выбранная марка материала трубы должна обладать достаточной ударной вязкостью для необходимого сочетания расчетных толщины и температуры.

Материалы для трубы из углеродистой стали, не прошедшие испытания на ударную вязкость, как минимум поставляют нормализованными для эксплуатации при температурах ниже 0°C; для сварных компонент, в зависимости от минимальной (расчетной) рабочей температуры и толщины свариваемых деталей, может потребоваться PWHT.

ПРЕДОСТЕРЕЖЕНИЕ - PWHT может ухудшить механические свойства материалов труб марок X [5].

5.1.5 Инженерные коммуникации

Материалы, не содержащие углеродистую сталь, обычно применяют в инженерных коммуникациях. Однако если используют стальную трубу марки или типа, неприемлемого для эксплуатации при наличии углеводорода в соответствии с 5.1.1, то для предотвращения случайной эксплуатации такой трубы в присутствии углеводорода разрабатывают определенную процедуру маркировки.

5.1.6 Трубная обвязка (контрольно-измерительные и гидравлические/воздушные системы)

В хлоридных средах и для всех операций в присутствии углеводорода или воздуха используют термически отпущенную на твердый раствор трубную обвязку из аустенитной нержавеющей стали (AISI 316 или AISI 316L), как бесшовную, так и ERW.

5.2 Размерные критерии. Общие положения

5.2.1 При определении диаметра трубы, которую используют в трубопроводных системах платформы, учитывают как скорость потока, так и потери давления. В 5.3, 5.4 и 5.5 приведены уравнения для определения диаметров труб (и графики для быстрой оценки диаметров труб) для линий транспортировки жидкости, однофазного газа и двухфазной смеси жидкость/газ соответственно. Эти уравнения используют для предварительной оценки размера, а также для трубопроводов, в которых падение давление не является критическим фактором. Для линий, где это является критичным, проводят более детальные вычисления. Для облегчения расчетов размера труб во многих компаниях используют компьютерные программы, часто использующие уравнение Коулбрука; см. дополнительную информацию [10].

5.2.2 При определении размера труб рассматривают весь диапазон условий, который определяет наибольшее значение размера трубопровода, так же как и начальные значения расхода. К ним относят повышенные расходы жидкости или уменьшенное давление газа, которые могут иметь место в течение некоторого времени после пуска установки. Часто целесообразно ввести коэффициент пульсации режима в интервале от 20 до 50% к прогнозируемому нормальному расходу, если параметры ожидаемой пульсации не были ранее определены точнее в измерениях давления пульсации в аналогичных системах или при специальных расчетах гидравлического удара. В таблице 2 приведены некоторые типовые значения коэффициентов пульсации, которые можно использовать, если отсутствует более точная информация.

Таблица 2 - Типовые коэффициенты пульсации

Производственная операция

Коэффициент пульсации, %

Установка, обрабатывающая первичную продукцию своей платформы

20

Установка, обрабатывающая первичную продукцию другой платформы или отдаленной скважины не более чем в 45 м (150 футах) по воде

30

Установка, обрабатывающая первичную продукцию другой платформы или отдаленной скважины в более чем 45 м (150 футах) по воде

40

Установка, обрабатывающая газлифтную продукцию своей платформы

40

Установка, обрабатывающая газлифтную продукцию другой платформы или удаленной скважины

50

В линиях трубопровода больших диаметров, транспортирующих среду в парожидкостной фазе между платформами по системам стояков, наблюдались значения коэффициента пульсации, превышающие 200% из-за пробкового режима потока. Программы для пробкового режима парожидкостного потока находятся в открытом доступе и используют для оценки такого режима.

5.2.3 При определении потери давления в линии учитывают наличие клапанов и фитингов. Используют заводские данные или эквивалентную длину из таблицы 3.

5.2.4 Для вычисленных размеров трубопроводов может потребоваться корректировка исходя из имеющегося инженерного опыта.

Таблица 3 - Эквивалентная длина при 100%-ном открытии клапанов и фитингов

NPS

НД

Регули-

рующий

Угло-

вой

Запор-

ный

Проб-

ковый

45° колено

Колено малого радиуса

Колено большого радиуса

Ветвь тройника

Рабочая длина тройника

Расширение

Сокращение

клапан

или

клапан

клапан

клапан, зад-

Сварка

Резьба

Сварка

Резьба

Сварка

Резьба

Сварка

Резьба

Сварка

Резьба

Резкое

Стандартный переходник

Резкое

Стандартный переходник

шаровой

вижка

Эквивалентная длина относительно малого диаметра

обрат-

ный клапан

или шаро-

вой клапан

d/D=

1/4

d/D=

1/2

d/D=

3/4

d/D=

1/2

d/D=

3/4

d/D=

1/4

d/D=

1/2

d/D=

3/4

d/D=

1/2

d/D=

3/4

1 1/2

40

16,8

7,92

3,96

0,305

0,305

0,610

0,914

1,52

0,610

0,914

2,49

2,74

0,610

0,914

1,52

0,914

0,305

1,22

0,305

0,914

0,610

0,305

10,305

-

2

50

21,3

10,1

5,18

0,610

0,610

0,914

1,22

1,52

0,610

1,22

3,05

3,35

0,914

1,22

2,13

1,22

0,305

1,52

0,305

0,914

0,914

0,305

10,305

2 1/2

65

24,4

12,2

6,10

0,610

0,610

1,52

0,914

3,66

0,914

2,44

1,52

0,610

1,83

0,610

1,22

0,914

0,610

20,610

3

80

30,5

15,2

7,62

0,610

0,610

-

1,83

-

1,22

-

4,17

-

1,22

-

3,05

1,83

0,610

2,44

0,610

1,52

1,22

0,610

20,610

0,305

4

100

39,6

19,8

9,75

0,914

0,914

2,13

1,52

5,79

1,52

3,66

2,44

0,914

3,05

0,914

1,83

1,52

0,914

3,914

6

150

61,0

30,5

14,6

1,22

1,22

3,35

2,44

8,53

2,44

5,49

3,66

1,22

4,27

1,22

2,74

2,13

1,22

1,22

8

200

79,2

38,1

19,5

1,83

1,83

-

4,57

-

2,74

-

11,3

-

2,74

-

7,62

4,88

1,52

5,79

1,52

3,66

2,74

1,52

1,52

0,610

10

250

101

48,8

24,4

2,13

2,13

5,49

3,66

14,3

3,66

9,45

6,10

2,13

7,32

2,13

4,57

3,66

1,83

1,83

0,610

12

300

122

57,9

29,0

2,74

2,74

6,71

4,27

16,8

4,27

11,3

7,32

2,44

9,53

2,49

5,49

4,27

2,13

2,13

0,610

Доступ к полной версии этого документа ограничен

Ознакомиться с документом вы можете, заказав бесплатную демонстрацию систем «Кодекс» и «Техэксперт».

Что вы получите:

После завершения процесса оплаты вы получите доступ к полному тексту документа, возможность сохранить его в формате .pdf, а также копию документа на свой e-mail. На мобильный телефон придет подтверждение оплаты.

При возникновении проблем свяжитесь с нами по адресу spp@kodeks.ru

ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

Название документа: ГОСТ Р ИСО 13703-2018 Нефтяная и газовая промышленность. Проектирование и монтаж трубопроводных систем на морских добывающих платформах

Номер документа: ИСО 13703-2018

Вид документа: ГОСТ Р

Принявший орган: Росстандарт

Статус: Документ в силу не вступил

Опубликован: Официальное издание. М.: Стандартинформ, 2018 год
Дата принятия: 15 ноября 2018

Дата начала действия: 01 апреля 2019
Информация о данном документе содержится в профессиональных справочных системах «Кодекс» и «Техэксперт»
Узнать больше о системах