Статус документа
Статус документа

     

ГОСТ Р 56866-2016



НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

УГЛЕВОДОРОДЫ ГАЗООБРАЗНЫЕ И ГАЗЫ УГЛЕВОДОРОДНЫЕ СЖИЖЕННЫЕ

Определение общего содержания серы методом ультрафиолетовой флуоресценции

Gaseous hydrocarbons and liquefied petroleum gases. Determination of total volatile sulfur by method of ultraviolet fluorescence



ОКС 75.160.20

Дата введения 2017-01-01

     

Предисловие

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт сырья, материалов и технологий" (ФГУП "ВНИИ СМТ") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 52 "Природный и сжиженные газы"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 25 февраля 2016 г. N 69-ст

4 Настоящий стандарт идентичен стандарту АСТМ Д 6667-14* "Стандартный метод определения общей летучей серы в газообразных углеводородах и сжиженных углеводородных газах ультрафиолетовой флуоресценцией" (ASTM D 6667-14 "Standard test method for determination of total volatile sulfur in gaseous hydrocarbons and liquefied petroleum gases by ultraviolet fluorescence", IDT).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.      


Наименование настоящего стандарта изменено относительно наименования указанного стандарта АСТМ для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных стандартов соответствующие им национальные и межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

6 ПЕРЕИЗДАНИЕ. Сентябрь 2019 г.


Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

     1 Область применения

1.1 Настоящий стандарт устанавливает метод определения общего содержания летучей серы в газообразных углеводородах и сжиженных углеводородных газах. Прецизионность метода была определена для содержания серы в газообразных углеводородах в диапазоне от 1 до 100 мг/кг и в сжиженных углеводородных газах в диапазоне от 1 до 196 мг/кг (примечание 1).

Примечание 1 - Оценка суммарного предела количественного определения, информация о стабильности проб и другая информация, полученная по результатам межлабораторных исследований прецизионности метода, приведена в отчетах АСТМ.

_______________

Подробные данные можно получить в ASTM International Headquarters при запросе отчета RR:D02-1506 в службе поддержки клиентов по электронной почте service@astm.org.

Подробные данные можно получить в ASTM International Headquarters при запросе отчета RR:D02-1784 в службе поддержки клиентов по электронной почте service@astm.org.

1.2 Метод не позволяет определить соединения серы, которые не испаряются в условиях проведения испытания.

1.3 Настоящий метод применим для определения общего содержания серы в сжиженных углеводородных газах при содержании галогенов менее 0,35% масс.

1.4 Значения в единицах системы СИ считают стандартными.

1.5 В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его использованием. Пользователь стандарта несет ответственность за обеспечение соответствующих мер безопасности и охраны здоровья и определяет целесообразность применения законодательных ограничений перед его использованием. Подробное описание опасного воздействия приведено в 3.1 и разделах 6 и 7.

     2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

     2.1 Стандарты АСТМ

__________________

           Уточнить ссылки на стандарты АСТМ можно на сайте АСТМ www.astm.org или в службе поддержки клиентов АСТМ: service@astm.org. В информационном томе ежегодного сборника стандартов (Annual Book of ASTM Standards) следует обращаться к сводке стандартов ежегодного сборника стандартов на странице сайта.


ASTM D 1070, Standard test methods for relative density of gaseous fuels (АСТМ Д 1070 Стандартный метод определения относительной плотности газообразных топлив)

ASTM D 1265, Standard practice for sampling liquefied petroleum (LP) gases, manual method (АСТМ Д 1265 Стандартная практика отбора проб сжиженных нефтяных газов, ручной метод)     

ASTM D 3700, Standard practice for obtaining LPG samples using a floating piston cylinder (АСТМ Д 3700 Стандартная практика отбора проб сжиженных нефтяных газов с использованием цилиндра с плавающим поршнем)

ASTM D 5287, Standard practice for automatic sampling of gaseous fuels (АСТМ Д 5287 Стандартная практика автоматического отбора проб газообразных топлив)

ASTM D 6299, Standard practice for applying statistical quality assurance and control charting techniques to evaluate analytical measurement system performance (АСТМ Д 6299 Стандартная практика применения статистических методов контроля качества и контрольных карт для оценки аналитических измерительных систем)

ASTM F 307, Standard practice for sampling pressurized gas for gas analysis (АСТМ Ф 307 Стандартная практика отбора проб сжатого газа для анализов)

2.2 Стандарты Ассоциации переработчиков газа (GPA)

_______________

Доступны в Ассоциации переработчиков газа (GPA), 6526 E. 60th St., Tulsa, OK 74145, USA.


GPA 2166, Obtaining natural gas samples for analysis by gas chromatography (ГПА 2166 Получение проб природного газа для анализов газовой хроматографией)

GPA 2174, Obtaining liquid hydrocarbon samples for analysis by gas chromatography (ГПА 2174 Получение проб жидких углеводородов для анализов газовой хроматографией)

     3 Сущность метода

3.1 Пробу сжиженного углеводородного газа вводят нагреваемым краном-дозатором, соединенным с нагреваемой расширительной камерой. Затем проба в газообразном состоянии подается в трубку с высокой температурой для сжигания, в которой сера окисляется в насыщенной кислородом атмосфере до диоксида серы (). Воду, образующуюся при сжигании пробы, удаляют, а полученные газы подвергают воздействию ультрафиолетового излучения. Диоксид серы поглощает энергию ультрафиолетового излучения и переходит в возбужденное состояние. Флуоресценцию, испускаемую возбужденным диоксидом серы (*), при его возвращении в стабильное состояние регистрируют фотоэлектронным умножителем, результирующий сигнал которого отражает содержание серы в пробе. (Предупреждение - Избыточное ультрафиолетовое облучение может оказывать негативное воздействие на здоровье оператора. Оператор должен быть защищен от воздействия прямого или рассеянного ультрафиолетового излучения, особенно тщательно следует защищать глаза).

     4 Назначение и применение

4.1 Наличие серы в сжиженных углеводородных газах, используемых в качестве топлива, приводит к образованию оксидов серы , вызывающих коррозию деталей двигателя и выхлопной системы. Катализаторы некоторых процессов в нефтепереработке и химической очистке могут быть отравлены сернистыми соединениями, присутствующими в исходном сырье. Настоящий метод можно использовать для определения серы в исходном сырье, в товарной продукции, а также для определения соответствия требованиям регламентирующих органов.

     5 Аппаратура

5.1 Печь

Электрическая печь, обеспечивающая поддержание температуры (1075±25)°C, достаточной для пиролиза пробы и окисления серы до .

5.2 Трубка для сжигания

Кварцевая трубка для сжигания, обеспечивающая прямое введение пробы в нагретую окислительную зону печи. Трубка для сжигания должна иметь боковые отводы для введения кислорода и газа-носителя. Зона окисления должна быть достаточно большой (см. рисунок 1) для обеспечения полного сгорания пробы (см. 11.3). На рисунке 1 приведена типовая трубка для сжигания. Можно использовать трубки другой формы, не снижающие прецизионность определения.


1 - шаровое соединение 18/9; 2 - капилляр внутренним диаметром 6 мм и толщиной стенок 1 мм; 3 - внутренний диаметр должен удерживать септу диаметром 12 мм

Рисунок 1 - Пример типовой кварцевой трубки для сжигания с прямым вводом пробы

5.3 Контроль потока

Аппарат должен быть оснащен системой контроля потока, обеспечивающей поддержание постоянной скорости подачи кислорода и газа-носителя.

5.4 Осушительная трубка

Аппарат должен быть оснащен устройством для удаления водяного пара, образующегося при сжигании пробы. Для этого применяют мембранную осушительную трубку или осушитель, использующий эффект избирательного капиллярного удаления воды.

5.5 УФ флуоресцентный детектор

Детектор для количественного определения содержания серы, обеспечивающий измерение излучения диоксида серы при флуоресценции под воздействием ультрафиолетового излучения.

5.6 Система ввода пробы

Система ввода пробы состоит из нагреваемого крана-дозатора для проб в газообразном состоянии и/или крана-дозатора для проб в жидком состоянии и нагреваемой расширительной камеры, соединенной с входом в зону окисления (см. рисунок 2). Система продувается инертным газом-носителем и должна обеспечивать введение заданного количества анализируемого материала в зону окисления с контролируемой и воспроизводимой скоростью примерно 30 мл/мин. На рисунке 3 приведен пример такой системы.


1 - кислород для горения; 2 - пиролизная трубка; 3 - петля для ввода аргона/кислорода; 4 - септа; 5 - от системы ввода пробы

Рисунок 2 - Пример установки для определения общей серы и крана-дозатора для ввода проб в газообразном или жидком состоянии

     


1
- выход газа; 2 - вход газа-носителя; 3 - выход сжиженного углеводородного газа (LPG); 4 - подача LPG; 5 - подача газа; 6 - газ; 7 - LPG; 8 - смотровое окошко; 9 - петлевой дозатор для газа; 10 - соединения 1/8 дюйма; 11 - подача газа в детектор; 12 - подача испаренного LPG в детектор; 13 - испарительная камера для LPG; 14 - зона нагревания; 15 - петлевой дозатор для LPG; 16 - соединения 1/16 дюйма

Рисунок 3 - Направление потоков в системе ввода пробы

5.7 Ленточный самописец

Можно использовать аналогичный электронный регистратор данных, интегратор или самопишущий прибор.

     6 Реактивы

6.1 Чистота реактивов

Для испытаний следует использовать реактивы квалификации ч.д.а. Если нет других указаний, предполагается, что все реактивы соответствуют спецификациям Комитета по аналитическим реактивам Американского химического общества. Можно использовать реактивы другой квалификации, если установлено, что их чистота не снижает точность определения.

_______________

Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, D.C. (Химические реактивы. Спецификация Американского химического общества, Вашингтон, округ Колумбия). Предложения по проверке реактивов, не входящих в списки Американского химического общества, - см. Annular Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K. (Чистые образцы для лабораторных химикатов), а также the United States Pharmacopeia and National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville, MD. (Фармакопея США и национальный фармакологический справочник).

6.2 Инертный газ

Доступ к полной версии документа ограничен
Полный текст этого документа доступен на портале с 20 до 24 часов по московскому времени 7 дней в неделю.
Также этот документ или информация о нем всегда доступны в профессиональных справочных системах «Техэксперт» и «Кодекс».