Бутилкаучук (БК) представляет собой сополимер изобутилена с небольшим (1 масс. % - 5 масс. %) количеством изопрена и может быть получен катионной сополимеризацией изобутилена и изопрена в присутствии катионного катализатора Фриделя-Крафтса. В силу строения полимерной цепи бутилкаучук обладает хорошими барьерными свойствами и отличается высокой газо- и паронепроницаемостью, высокой тепло- и химической стойкостью. Эти свойства отличают его от высоконенасыщенных каучуков и определяют направления использования. Основное применение - автомобильные камеры и камеры форматоров-вулканизаторов. Однако из-за малой ненасыщенности бутилкаучук имеет такие недостатки, как плохая адгезия к металлокорду, низкая скорость вулканизации при использовании вулканизующих агентов, предназначенных для переработки непредельных каучуков, невозможность совулканизации с высоконенасыщенными каучуками. Эти недостатки устраняются модификацией БК. Наиболее распространенный способ модификации - это галогенирование с получением хлор- и бромбутилкаучука.
Известны два промышленных процесса получения бутилкаучука. Первый - это сополимеризация в среде растворителя (метилхлорида или этилхлорида), растворяющего мономеры, но не растворяющего каучук (бутилкаучук суспензионный). Получаемая дисперсия полимера в растворителе имеет более низкую вязкость, чем раствор каучука такой же концентрации, и поэтому можно применять повышенные концентрации мономеров в исходной шихте (до 35 масс. %).
Второй способ получения бутилкаучука имеет много общих черт с типовыми процессами синтеза растворных каучуков. Он состоит в полимеризации под действием алюминийорганических катализаторов в среде углеводородного растворителя (изопентана), растворяющего и мономеры, и каучук (бутилкаучук растворный). Галобутилкаучуки производят на основе специально полученного бутилкаучука взаимодействием с молекулярным галогеном в среде инертного к процессам галогенирования растворителя.
Каучуки, предназначенные для различных областей применения (в шинной промышленности, РТИ, строительной, медицинской и др.), различаются молекулярными параметрами, непредельностью, содержанием галогена, типом антиоксиданта, обусловливающего цвет продукта (от светлого до темно-желтого). Наиболее распространенные торговые марки отечественных и зарубежных производителей приведены в таблице 2.1.24.
Таблица 2.1.24 - Торговые марки бутилкаучука и галобутилкаучуков некоторых отечественных производителей
Фирма-производитель | Марка | ||
бутилкаучука | хлорбутилкаучука | бромбутилкаучука | |
ОАО "Нижнекамскнефтехим" | БК-1675Н | ХБК-139 | ББК-232 |
БК-1675 М | ХБК-150 | ББК-239 | |
БК-157°С | ББК-246 | ||
ООО "СИБУР" - Тольятти | БК-1675 Н |
Резина из бутилкаучука характеризуется высокой теплостойкостью, стойкостью к термоокислительной деструкции, озонному старению. Они устойчиво работают в агрессивных средах (окислители, кислоты, щелочи), что позволяет использовать эту резину для гуммирования химической аппаратуры. Отличительная особенность бутилкаучука - исключительно высокая газо- и паронепроницаемость, по этому показателю он превосходит все известные каучуки.
2.1.4.1 Бутилкаучук суспензионный
2.1.4.1.1 Описание технологических процессов, используемых в настоящее время
Технологическая схема получения бутилкаучука в среде метилхлорида приведена на рисунке 2.1.7.
Технологический процесс получения бутилкаучука состоит из следующих стадий:
1) приготовление катализаторного раствора;
2) приготовление исходных мономеров;
3) полимеризация;
4) двухступенчатая водная дегазация;
5) выделение, сушка и упаковка каучука;
6) разделение возвратных продуктов.
В качестве катализатора в процессе совместной полимеризации применяют трихлорид алюминия. Реакцию проводят при температуре минус 100°С, при этом в качестве охлаждающего агента используют жидкий этилен, а в качестве инертного разбавителя - метилхлорид.
Исходная шихта представляет собой смесь изобутилена, изопрена, возвратного метилхлорида, которые поступают со склада в емкость 1, для более полного смешивания компонентов используется циркуляционный насос 2. Состав смеси контролируется хроматографом и в зависимости от получаемой марки бутилкаучука производится корректировка смеси. Катализаторный раствор готовится пропусканием хлорметила через реакторы, заполненные гранулированным хлористым алюминием. Шихта и катализаторный раствор проходят систему пропановых и этиленовых холодильников и подаются через отдельные штуцера в нижнюю часть полимеризатора, снабженного многоярусной мешалкой и охлаждающей трубчаткой, - тепло реакции (тепловой эффект реакции 240 ккал/кг полимера) снимается за счет подачи жидкого этилена в трубное пространство.
1 - емкость для приготовления шихты; 2, 3, 8, 12 - насосы; 4-5 - холодильники; 6 - полимеризатор; 7 - водный дегазатор; 9 - вакуумный дегазатор; 10 - вакуум-фильтр; 11 - вакуум-ресивер; 13 - вакуум-насос; 14 - сушилка; 15 - шприц-машина; 16 - конвейер; 17 - вальцы; 18 - охлаждающий конвейер; 19 - брикетировочная машина; 20, 21 - конденсаторы; 22 - сепаратор; 23 - подогреватель
Рисунок 2.1.7 - Схема получения бутилкаучука в среде метилхлорида
Приготовленная смесь мономеров насосом 3 подается на охлаждение в холодильники 4 и 5 (первый из них охлаждается пропаном, а второй - этиленом). При выходе из последнего холодильника смесь с температурой минус 95°С поступает в полимеризатор 6, который охлаждается жидким этиленом и за счет этого в нем поддерживается температура минус 100°С. Смесь мономеров и катализаторный раствор подаются в нижнюю часть полимеризатора, смешиваются осевым циркуляционным насосом; по центральной переточке трубы реакционная смесь подается в верхнюю часть полимеризатора, откуда по периферическим циркуляционным трубам, которые охлаждаются жидким этиленом, возвращается в нижнюю часть аппарата. Образующаяся дисперсия бутилкаучука, содержащая 8%-12% полимера, выводится из верхней части полимеризатора по трубе в водный дегазатор 7. В трубопровод выхода полимера подается стоппер - изопропиловый спирт с целью дезактивации катализатора.
Полимеризатор бутилкаучука работает периодически в течение 24 ч. Система работает на выпуске полимера, за это время на стенках аппарата откладывается полимер, что ведет к ухудшению теплообмена. В следующие 16 ч производится освобождение полимеризатора от раствора полимера, затем аппарат промывают гексановой фракцией и готовят к новому рабочему циклу. Учитывая цикличность работы полимеризатора бутилкаучука, для достижения необходимой мощности устанавливают несколько аппаратов и обвязывают их в батареи, так что поступление полимера на дегазацию и выделение каучука осуществляется непрерывно.
В дегазаторе первой ступени 7 поддерживаются температура 70°С-75°С, давление 0,145 МПа и постоянный уровень; при этом под действием температуры испаряется основная часть мономеров и метилхлорида, которые поступают в конденсаторы 20 и 21, а несконденсированная часть направляется на компримирование и дальнейшую переработку. В дегазатор подается антиагломератор - стеарат кальция для предотвращения слипания крошки каучука.
Крошка каучука в воде из дегазатора 7 насосом 8 подается на вторую ступень - в вакуумный дегазатор 9, в котором отгоняют оставшуюся часть мономеров и метилхлорида. Из дегазатора 9 крошка каучука в воде направляется на концентраторы, а затем в усреднители. Усреднители объемом 100-150 м служат для усреднения крошки каучука с целью получения однородного полимера. Из усреднителя насосом крошка каучука в воде направляется на выделение, сушку и упаковку.