Каталитический риформинг бензинов является важнейшим процессом современной нефтепереработки и нефтехимии. Представляет собой процесс превращения низкооктанового прямогонного бензина атмосферной перегонки с помощью селективного катализатора и в присутствии водорода в высокооктановый бензин или в компоненты для компаундирования авиабензина; ароматические углеводороды - сырье для нефтехимического синтеза; водородосодержащий газ - технический водород, используемый в гидрогенизационных процессах нефтепереработки. Установки каталитического риформинга имеются практически на всех отечественных и зарубежных нефтеперерабатывающих заводах.
В промышленности в настоящее время используют два варианта риформинга. Первый вариант (топливный) - производство высокооктанового компонента бензина, второй вариант (нефтехимический) - получение ароматических углеводородов. Оба варианта имеют практически одинаковую технологическую схему и отличаются только мощностью, размерами аппаратов, фракционным составом сырья и параметрами ведения технологического процесса. Для нефтехимического варианта технологии дополнительно устанавливается блок экстракции и ректификации, необходимый для покомпонентного разделения ароматических углеводородов или их узких фракций. Основными показателями, определяющими качество и пригодность сырья для процесса риформинга, являются углеводородный и фракционный составы. Для каталитического риформинга применяют в основном прямогонные бензиновые фракции. Риформинг бензиновых фракций вторичного происхождения (например, термического крекинга, коксования, пиролиза) возможен только в смеси с прямогонным сырьем после предварительной глубокой гидроочистки. Фракционный состав сырья каталитического риформинга определяется целевым назначением процесса. Если целью каталитического риформинга является получение катализатов для производства высокооктановых бензинов, оптимальным сырьем для этого служат фракции, выкипающие в пределах 85-180°С. При производстве высокооктановых бензинов, особенно с октановым числом 95-100, каталитическому риформингу подвергается сырье утяжеленного фракционного состава с температурой начала кипения 105°С. Сырьем процесса риформинга для получения бензола и толуола служит узкая бензиновая фракция, выкипающая в пределах 85-105°С. Для получения суммарных ксилолов используют узкую фракцию, выкипающую в температурных пределах 105-127°С.
Основные технологические параметры, в значительной степени определяющие процесс каталитического риформинга и характеристики получаемых продуктов: температура, давление, объемная скорость подачи сырья, кратность циркуляции водородсодержащего газа. Однако в эксплуатационных условиях основным регулируемым параметром является температура на входе в реактор. Давление, скорость подачи сырья и кратность циркулирующего газа обычно поддерживают постоянными, оптимальными для переработки данного сырья. Распределение загрузки катализатора между реакторами зависит от химического состава углеводородного сырья и активности катализатора. Температура промышленных процессов риформинга обычно находится в интервале 450-530°С. С повышением температуры ускоряются все основные реакции, как целевые, так и побочные (реакции крекинга и коксообразования). Объемная скорость подачи сырья определяет удельную нагрузку реакционного объема по сырью и характеризует длительность контакта реагирующих промежуточных продуктов риформинга с катализатором и составляет обычно 1-2 ч. Оптимальные значения рабочих давлений промышленных процессов риформирования бензиновых фракций на алюмоплатиновых катализаторах составляют:
- 2,0-3,0 МПа - для процессов, направленных на получение индивидуальных ароматических углеводородов;
- 4,0 МПа (в последнем реакторе) - для процессов, целевым продуктом которых является высокооктановый компонент бензина.
Применение в последние годы стабильных полиметаллических катализаторов позволило на вновь проектируемых установках с неподвижным слоем катализатора снизить давление до 1,5-2,0 МПа, а на установках с движущимся слоем катализатора - до 0,7-1,5 МПа.
Кратности циркуляции ВСГ в промышленных процессах находятся в пределах 900-1500 м газа на 1 м сырья и зависят также от концентрации водорода в ВСГ. Таким образом, практически целесообразную кратность циркуляции ВСГ устанавливают с учетом качества сырья, активности катализатора, глубины процесса и экономических соображений.
Катализаторы риформинга являются бифункциональными (металлические и кислотные свойства), на которых протекает весь комплекс реакций (гидрирование, дегидрирование, изомеризации, дегидроциклизации и др.). Металлические свойства обеспечивает активные металлы и их кластеры (Pt, Pt-Re-Re-Pt, Pt-lr-lr-Pt). Кислотные свойства определяет носитель (гамма оксид алюминия), промотированый хлором. Для таких контактов характерна высокая стабильность в условиях реакционного периода, что, в конечном счете, обеспечивает возможность получения более высоких выходов как высокооктановых бензинов риформинга, так и ароматических углеводородов.
К биметаллическим катализаторам относят платино-рениевые и платино-иридиевые, содержащие 0,3...0,4% мас. платины и примерно столько же Re и Ir.
Различают сбалансированные (равное соотношение металлов, % масс.) и несбалансированные по Pt и Re. Для первой группы, характерна высокая степень превращения в реакциях ароматизации парафиновых углеводородов, а для второй - низкая степень превращения парафинов в реакциях дегидроциклизации, и повышение октанового числа происходит в основном в реакциях изомеризации парафиновых углеводородов.
Рений или иридий образуют с платиной биметаллический сплав, точнее кластер, типа Pt-Re-Re-Pt, который препятствует рекристаллизации - укрупнению кристаллов платины при длительной эксплуатации процесса. Такие катализаторы характеризуются, кроме высокой термостойкости, еще одним важным достоинством - повышенной активностью по отношению к диссоциации молекулярного водорода и миграции атомарного водорода. В результате отложение кокса происходит на более удаленных от металла центрах, что способствует сохранению активности при высокой закоксованности (до 20% мас. кокса на катализаторе). Из биметаллических катализаторов платино-иридиевый превосходит по стабильности и активности в реакциях дегидроциклизации парафинов не только монометаллический, но и платино-рениевый контакт. Применение биметаллических катализаторов позволило снизить давление риформинга (от 3,5 до 2...1,5 МПа) и увеличить выход бензина с октановым числом (О.Ч.) по исследовательскому методу (И.М.) до 95 пунктов примерно на 6%.
Полиметаллические кластерные контакты обладают стабильностью биметаллических, но характеризуются повышенной активностью, лучшей селективностью и обеспечивают более высокий выход риформата. Срок их службы составляет 6-7 лет.
Совершенствование катализаторов продолжается в основном в направлении увеличения выхода стабильного риформата и водорода, а также удлинения межрегенерационного цикла. Перспективным направлением, являющимся значимым для отечественных разработчиков катализаторных систем ввиду ужесточения экологических требований к товарным бензинам (снижение доли ароматических углеводородов в целом и бензола), является разработка высокоселективных катализаторов к реакциям изомеризации парафинов и/или их циклизации в циклопентан (ОЧИ 101 пункт), метилциклопентан (ОЧИ 91 пункт).
2.9.1 Установка каталитического риформинга со стационарным слоем катализатора
Установки этого типа в настоящее время получили наибольшее распространение среди процессов каталитического риформинга бензинов. Они рассчитаны на непрерывную работу без регенерации в течение 1 года и более. Окислительная регенерация катализатора производится одновременно во всех реакторах. Сырье установок подвергается предварительной глубокой гидроочистке от сернистых, а в случае переработки бензинов вторичных процессов - гидроочистке от азотистых и других соединений, гидрированию непредельных.
Установки каталитического риформинга всех типов включают следующие блоки: гидроочистки сырья, очистки водородсодержащего газа, реакторный блок, блоки сепарации газа и стабилизации катализата.
Схема установки каталитического риформинга со стационарным слоем катализатора приведена на рисунке 2.29. Блок гидроочистки бензина является неотъемлемой частью современной установки риформинга, но относится к гидрокаталитическим процессам переработки и поэтому на схеме не представлен.
Рисунок 2.29 - Технологическая схема установки риформинга со стационарным катализатором:
1, 11, 17, 18 - насосы; 2, 13, 19 - теплообменники; 3 - многосекционная печь; 4, 5, 6 - реакторы; 7, 15, 20 - холодильники; 8, 9 - сепараторы; 10, 14 - колонны, 12 - печь; 16 - емкость; 21 - компрессор;
I - гидроочищенный низкооктановый бензин; II - водородсодержащий газ; III - сухой углеводородный газ; IV - стабильная головка; V - стабильный бензин
2.9.2. Установка каталитического риформинга с движущимся слоем катализатора
В процессе платформинга фирмы UOP (США) с движущимся слоем катализатора, циркулирующим между реактором и регенератором, три реактора расположены друг над другом и выполнены в виде одного колонного аппарата разного диаметра по высоте. Катализатор из первого (верхнего) реактора перемещается во второй, а из второго в третий. Из нижнего реактора катализатор транспортируется в регенератор. На рисунке 2.30 приведена технологическая схема установки риформинга с движущимся слоем катализатора компании UOP, которая получила название CCR-риформинг (continuous catalytic reforming). Она наиболее экономична в случае, когда рабочее давление снижается с одновременным повышением глубины превращения сырья.