6.В.1. Производственные помещения, оборудование и персонал.
В соответствии с Правилами надлежащей производственной практики Евразийского экономического союза, утвержденными Решением Совета Евразийской экономической комиссии от 3 ноября 2016 г. N 77 (далее - Правила производственной практики), вносить какие-либо вирусы в производственное оборудование не допускается. В связи с этим исследования по очистке от вирусов должны проводиться в отдельной лаборатории, оборудованной для работы с вирусами, персоналом с вирусологической квалификацией в сотрудничестве с производственным персоналом, занимавшимся планированием и подготовкой уменьшенной версии процесса очистки.
(Абзац в редакции, введенной в действие с 31 января 2023 года решением Совета ЕЭК от 15 июля 2022 года N 110. - См. предыдущую редакцию)
6.В.2. Система производства в уменьшенном масштабе.
Необходимо доказать валидность (пригодность) уменьшенного масштаба производства. Уровень очистки в уменьшенном масштабе должен максимально соответствовать методу производства. Необходимо подтвердить, что все параметры (хроматографическое оборудование, высота слоя сорбента колонки (column bed-height), линейная скорость потока (linear flow-rate), отношение скорости потока к объему слоя сорбента (flow-rate-to-bed-volume ratio) (время контакта), виды буферных растворов и гелей, значение pH, температура и концентрация белка, соли и продукта) максимально приближены к промышленному способу производства. Необходимо получить тот же профиль элюирования. В отношении процедур необходимо соблюдать аналогичные требования. Неизбежные отклонения необходимо проанализировать с точки зрения их влияния на результаты.
6.В.3. Анализ поэтапной элиминации вирусов.
При проведении исследований по очистке от вирусов желательно оценить вклад более чем одного этапа производства в элиминацию вирусов. Этапы, на которых, вероятнее всего, устраняются вирусы, необходимо отдельно оценить на предмет их способности элиминировать и инактивировать вирусы, при этом следует уделить особое внимание точному разграничению отдельных этапов. На каждом подлежащем испытанию этапе материал должен содержать достаточное количество вируса, необходимое для оценки эффективности каждого этапа. Как правило, на каждом подлежащем испытанию этапе вирус добавляется во внутрипроизводственный материал. В некоторых случаях, достаточно просто добавить вирус в высоком титре в необработанный продукт и измерять его концентрацию между последовательными этапами. Если элиминация вируса достигается с помощью процедур отделения, рекомендуется при необходимости и по возможности изучить распределение вирусной нагрузки по различным фракциям. Если на множестве этапов процесса производства используются вирулицидные буферные растворы, как часть оценки всего процесса допускается использовать альтернативные стратегии, например, параллельное добавление менее вирулицидных буферных растворов. Титр вируса необходимо определять до и после каждого исследуемого этапа. В целях обеспечения необходимой статистической значимости результатов необходимо использовать методики количественного определения инфицирующей способности с высокой чувствительностью и воспроизводимостью с достаточным числом повторностей. При достаточном обосновании допускается использовать количественные методики, не направленные на выявление инфицирующей способности. В целях обеспечения чувствительности методов во все методики по определению инфицирующей способности необходимо включать надлежащий вирусный контроль. К тому же необходимо принимать во внимание особенности отбора проб вируса в низких концентрациях в соответствии с требованиями к статистическим подходам к интерпретации результатов испытаний на вирусы согласно приложению N 3 к настоящей главе.
6.В.4. Определение вклада физической элиминации и инактивации вирусов.
Снижение инфицирующей способности вируса достигается за счет его элиминации или инактивации. Необходимо описать возможные механизмы снижения инфицирующей способности вируса на каждом изученном этапе процесса производства и указать, достигнуты они за счет инактивации или элиминации. Если процесс производства не позволяет добиться удовлетворительного снижения инфицирующей способности, а элиминация вируса рассматривается в качестве основного фактора безопасности препарата, необходимо внедрить специальные или дополнительные этапы инактивации и (или) элиминации. На определенном этапе может потребоваться разграничить элиминацию и инактивацию (например, если есть вероятность того, что буферный раствор, использованный более чем на одном этапе, может влиять на инактивацию на каждом этапе, то есть влияние буферного раствора на инактивацию распределяется между несколькими хроматографическими этапами, при этом необходимо определить степень элиминации, достигаемую за счет каждого из этих хроматографических этапов).
6.В.5. Оценка инактивации.
Для оценки инактивации вируса в необработанном продукте или промежуточном материале должен быть введен инфекционный вирус и рассчитан фактор (коэффициент) снижения вирусной нагрузки. Следует учитывать, что инактивация вируса не является простым процессом первого порядка, обычно она более сложная и имеет быструю фазу 1 и медленную фазу 2. Именно поэтому исследование должно быть спланировано так, чтобы отбор проб проводился в разные временные точки, и была построена кривая инактивации. В исследования по инактивации помимо временной точки, соответствующей минимальной экспозиции, рекомендуется включать не менее одной временной точки, которая предшествует точке минимальной экспозиции и отличается от ноля. Дополнительные данные особенно необходимы, если "релевантный" вирус является патогенным для человека и создан процесс эффективной его инактивации. Однако в исследованиях инактивации, в которых неспецифичные "модельные" вирусы или специфичные "модельные" вирусы используются в качестве суррогатов вирусных частиц (например, внутрицитоплазматические ретровирусоподобные частицы в клетках яичника китайского хомячка) воспроизводимость очистки необходимо подтвердить по меньшей мере в 2 исследованиях. Начальную вирусную нагрузку по возможности необходимо определять путем выявления вируса после его добавления в исходный материал. Если это невозможно, то начальная вирусная нагрузка рассчитывается по титру вируса в добавляемом к исходному материалу препарате. Если высокая скорость инактивации не позволяет построить кривую инактивации с использованием условий процесса, необходимо предусмотреть надлежащие контроли, в целях подтверждения того, что в ходе инактивации инфицирующая способность была устранена.
6.В.6. Использование и регенерация хроматографических колонок.
Со временем или при повторном (многократном) использовании хроматографических колонок и других систем, используемых в процессе очистки, их способность к элиминации вируса может изменяться. Определение стабильности очистки от вирусов после многократного применения оправдывает возможность повторного использования колонок. Необходимо подтвердить, что вирусы, которые были потенциально задержаны производственной системой, должным образом уничтожены и удалены перед повторным ее использованием. Таким подтверждением, к примеру, может служить демонстрация того, что процедуры очистки и регенерации инактивируют или элиминируют вирус.
6.В.7. Особые меры предосторожности.
При приготовлении вирусов в высоком титре необходимо соблюдать осторожность, чтобы не допустить их агрегации, которая может улучшить физическую элиминацию, но снизить инактивацию и исказить таким образом корреляцию с фактическим производством.
Необходимо учитывать минимальное количество вируса, содержание которого можно достоверно определить.
В целях анализа снижения инфицирующей способности вируса вследствие разведения, концентрации, фильтрации или хранения проб перед их разведением, в исследование необходимо включать параллельные контрольные методики количественного определения.
"Добавление" вирусов необходимо осуществлять в небольшом объеме, чтобы не разводить продукт или не изменить его свойства. Проба испытуемого белка после его разведения больше не является идентичной продукту, получаемому промышленным способом.
Небольшие различия в буферных растворах, питательной среде, реактивах и т.п. могут значительно повлиять на очистку от вирусов.
Инактивация вирусов зависит от времени, поэтому время, в течение которого продукт, в который добавлен вирус, остается в определенном буферном растворе или определенной хроматографической колонке, должно соответствовать условиям промышленного процесса производства.
Буферные растворы и продукт необходимо оценивать отдельно на токсичность и влияние на результаты методик, применяемых для определения титра вируса, так как эти компоненты могут негативно влиять на индикаторные клетки. Если такие растворы токсичны для индикаторных клеток, могут потребоваться разведение, коррекция pH или диализ буферного раствора, содержащего добавленный вирус. Если продукт обладает собственной противовирусной активностью, может потребоваться проведение исследования очистки без продукта в "имитационном" цикле ("mock" run), хотя при этом исключение продукта или замена его на аналогичный белок, не обладающий противовирусной активностью, может повлиять на поведение вирусов на некоторых этапах производства. Необходимо включить достаточные контроли для оценки влияния процедур, используемых исключительно для приготовления проб для методик определения (например, диализ, хранение), на элиминацию и (или) инактивацию добавленного вируса.
Во многих схемах очистки повторно используются одинаковые или схожие буферные растворы или колонки. При анализе данных это необходимо принимать во внимание. Эффективность конкретного метода элиминации вируса может зависеть от этапа производства, на котором он используется.
Если условия производства или буферные растворы чрезмерно цитотоксичны или вирулицидны, совокупные факторы (коэффициенты) снижения вирусной нагрузки могут быть недооценены, в этом случае оценка проводится в индивидуальном порядке. Ввиду внутренних ограничений или несоответствующего дизайна исследований по очистке от вирусов общие факторы (коэффициенты) снижения вирусной нагрузки могут быть также переоценены.