Статус документа
Статус документа

ГОСТ Р 71540-2024 (ИСО/МЭК 5392:2024) Искусственный интеллект. Эталонная архитектура инженерии знаний

Введение


Приложения искусственного интеллекта, принцип работы которых основан в том числе на знаниях, все чаще привлекают внимание. В инженерии знаний знания автоматически или полуавтоматически приобретаются из источников информации, которая, в свою очередь, генерируется путем обработки крупномасштабных разнородных данных, полученных из множества источников. Знания интегрируются в системы, основанные на знаниях, и используются для предоставления интеллектуальных услуг на основе знаний. Одной из целей инженерии знаний является представление человеческих знаний (например, в таких отраслях, как финансы, медицинское обслуживание, транспорт и промышленное производство и других) и их трансформация в машинные знания с использованием представлений, как понятных людям, так и применимым в системах искусственного интеллекта (ИИ). На данный момент инженерия знаний наряду с большими данными, глубоким обучением, обработкой естественного языка и т.д. стала одной из основных движущих сил развития ИИ.

Ключевые технологии инженерии знаний включают представление знаний, моделирование знаний, приобретение знаний, хранение знаний, слияние знаний, вычисление знаний, сопровождение знаний, визуализацию знаний и т.д. Кроме того, было разработано множество продуктов и решений для платформ управления знаниями, позволяющих повысить гибкость внедрения инженерии знаний в организациях. Распределенные системы инженерии знаний могут быть интегрированы и развернуты на основе процессов обмена знаниями и сопровождения знаний, осуществляющихся между системами. Распределенные автономные системы агентов и их взаимодействие в системе систем может дополнительно порождать необходимое интеллектуальное и основанное на знаниях поведение для совместной работы и сотрудничества.

Среда описания ресурсов (RDF) [1], схема среды описания ресурсов (RDFS) [2] и ее расширение RDFS-PLUS, язык веб-онтологий (OWL) [3], протокол и язык запросов в формате RDF (SPARQL) [4] и связанные с онтологиями теории и стандарты [5-7] обеспечивают прочный фундамент из инструментов и теорий для представления и моделирования знаний. Также были разработаны и другие связанные с инженерией знаний стандарты.

Инженерия знаний успешно применяется во многих отраслях, включая выявление финансового мошенничества, удаленную эксплуатацию и техническое обслуживание оборудования, анализ профилей пользователей и рекомендации по продуктам, отслеживание и прогнозирование направлений исследований, интеллектуальный кредитный анализ, судебные споры и предварительный разбор дел на основе аналогичных случаев, интеллектуальное распространение новостей, интеллектуальная компьютерная диагностика и лечение и т.д. Многие организации рассматривают платформы или системы, основанные на инженерии знаний как важную инфраструктуру знаний. Однако словари инженерии знаний, основные конструктивные компоненты инженерии знаний, процессы инженерии знаний и их отношения еще четко не определены. Это вызывает недопонимание и ненужные расходы на коммуникацию между поставщиками данных, фундаментальных технологий, алгоритмов, а также системных интеграторов и других заинтересованных сторон в системах инженерии знаний.

Чтобы облегчить сотрудничество между заинтересованными сторонами инженерии знаний, характеристики и приложения инженерии знаний могут быть всесторонне описаны и классифицированы. Предполагается, что настоящий стандарт будет использоваться в качестве руководства по построению систем инженерии знаний.