[1] | ISO 26262:2018 | Road vehicles Functional safety |
[2] | Aeronautics, The Radio Technical Commission for Software Considerations in Airborne Systems and Equipment Certification. The Radio Technical Commission for Aeronautics. 2012 | |
[3] | ISO/IEC/IEEE 16085:2020 | Systems and software engineering Life cycle processes Risk management |
[4] | ISO 14155:2011 | Clinical investigation of medical devices for human subjects Good clinical practice |
[5] | Goodfellow I.J., Shlens J., Szegedy С. Explaining and harnessing adversarial examples. Astrophysics data system. 2014, arXiv: 1412.6572 | |
[6] | Liang D., Hayes P., Althof A. Deep Adversarial Robustness. 2017 | |
[7] | Yuan X., He P., Zhu Q., Li X. Adversarial Examples: Attacks and Defenses for Deep Learning. IEEE Transactions on Neural Networks and Learning Systems. 2019 | |
[8] | Fawcett T. An Introduction to ROC Analysis. Elsevier Science Inc., Pattern Recognition Letters, Vol. 27. 2006 | |
[9] | David M.W. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation. Journal of Machine Learning Technologies, Vol. 2. 2011 | |
[10] | Ting K.M. Encyclopedia of machine learning. Springer. 2011, ISBN 978-0-387-30164-8 | |
[11] | Brooks H., Brown B., Ebert B., Ferro C., Jolliffe I., Koh T.Y., Roebber P., Stephenson D. WWRP/WGNE Joint Working Group on Forecast Verification Research. World Meteorological Organisation, Collaboration for Australian Weather and Climate Research. 2017 | |
[12] | Brodersen K.H., Ong C.S., Stephan K.E., Buhmann J.M. The Balanced Accuracy and Its Posterior Distribution. Istanbul: IEEE, 20th International Conference on Pattern Recognition. 2010, ISBN 978-1-4244-7541-4 | |
[13] | Tsoumakas G., Katakis I., Vlahavas I. Data Mining and Knowledge Discovery Handbook, in Mining Multi-label Data. Springer, Boston, MA. 2009, ISBN 978-0-387-09822-7 | |
[14] | Matthews B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure, Vol. 405. 1975, ISSN 0005-2795 | |
[15] | Chicco D. Ten quick tips for machine learning in computational biology. BioData Mining, Vol. 10. 2017, PMCID: PMC5721660 | |
[16] | Crammer K., Singer Y. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. JMLR, Journal of Machine Learning Research, Vol. 2. 2001, ISSN 1532-4435 | |
[17] | Choi J.Y., Choi C.H. Sensitivity analysis of multilayer perceptron with differentiable activation functions.1, IEEE, Transactions on Neural Networks, Vol. 3. 1992, ISSN 1045-9227 | |
[18] |
| |
[19] | Hess D.E., Roddy R.F., Faller W.E. Uncertainty Analysis Applied to Feedforward Neural Networks. Applied Simulation Technologies, Vol. 54. 2007 | |
[20] | Katz G., Barrett C., Dill D., Julian K., Kochenderfer M. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. Springer, Computer Aided Verification. 2017 | |
[21] | Huang X., Kwiatkowska M., Wang S., Wu M. Safety Verification of Deep Neural Networks. Springer, Computer Aider Vision. 2016 | |
[22] | Ehlers R. Formal verification of piece-wise linear feed-forward neural networks. Automated Technology for Verification and Analysis. 2017 | |
[23] | Bunel R., Turkaslan I., Torr P., HS., KOHLI P., KUMAR M.P Piecewise linear neural network verification. 2017, CoRR | |
[24] | Bastani O., loannou Y., Lampropoulos L., Vytiniotis D., Nori A., Criminisi A. Measuring Neural Net Robustness with Constraints. Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016, ISBN 978-1-5108-3881-9 | |
[25] | Cousot P., Cousot R. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. ACM, Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 1977 | |
[26] | Souyris J., Delmas D. Experimental Assessment of | |
[27] | Yamaguchi T., Brain M., Ryder C., Imai Y., Kawamura Y. Application of Abstract Interpretation to the Automotive Electronic Control System. Springer, Verification, Model Checking, and Abstract Interpretation, Vol. 11388. 2019 | |
[28] | Bouissou O., Conquet E., Cousot P., Cousot R., Feret J., Ghorbal K., Goubault E., Lesens D., Mauborgne L, | |
[29] | Gehr T., Mirman M., Drachsler-Cohen D., Tsankov P., Chaudhuri S., Vechev M.T. AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation. IEEE Symposium on Security and Privacy, Vol. 2018, ISSN 2375-1207 | |
[30] | Singh G., Gehr T., | |
[31] | Mirman M., Gehr T., Vechev M. Differentiable Abstract Interpretation for Provably Robust Neural Networks. Proceedings of the 35th International Conference on Machine Learning. 2018 | |
[32] | Pulina L., Tacchella A. An Abstraction-Refinement Approach to Verification of Artificial Neural Networks. Springer, Computer Aided Verification. Vol. 6174. 2010, ISBN 978-3-642-14295-6 | |
[33] | ISO/IEC/IEEE 29119-3:2013 Software and systems engineering Software testing Part 3: Test documentation | |
[34] | Proposal for guidelines regarding classification of software based information systems used in health care. The Medical Products Agency's Working Group on Medical Information Systems, Lakemedelsverket Medical Products Agency. 2009, доступно no https://lakemedelsverket.se/upload/foretag/medicinteknik/en/Medical-lnformation- Systems-Report_2009-06-18.pdf | |
[35] | Florek H.J., Brunkwall J., Orend K.H., Handley I., Pribble J., Dieck R. Results from a First in-Human Trial of a Novel Vascular Sealant. Frontiers in Surgery, Vol. 2. 2015 | |
[36] | Beede E., Elliott E., Hersch F., lurchenko A., Wilcox L., Ruamviboonsuk P. et al. A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy. ACM Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 2020 | |
[37] | An investigation into the performance of facial recognition systems relative to their planned use in photo identification documents - BioP. BSI. 2004, доступно из: https://www.bsi.bund.de/SharedDocs/Downloads/EN/SI/Publications/Studies/BioP/BioPfinalreport_pdf.pdf | |
[38] | Automated Border Control (ABC) Trial Stansted Airport BAA British Airports Authority and Accenture. 2009, доступно по https://www.accenture.com/t20150523T054056Z__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Technology_2/Accenture-ABC-Trial-Summary-Report.pdfla=en | |
[39] | Vetter V., Zielke T., von Seelen W. Integrating face recognition into security systems. In: Audio- and Video-based Biometric Person Authentication. Springer Berlin Heidelberg, Vols. Audio- and Video-based Biometric Person Authentication (AVBPA). 1997, доступно из: https://doi.org/10.1007/bfb0016025 | |
[40] | Burke J., Dunne B. Field testing of six decision support systems for scheduling fungicide applications to control Mycosphaerella graminicola on winter wheat crops in Ireland. The Journal of Agricultural Science, Vol. 146. 2008 | |
[41] | The Pathway to Driverless Cars, A Code of Practice for testing. UK Government, Department for Transportation. 2015, доступно из: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/446316/pathway-driverless-cars.pdf | |
[42] | Lamel L., Gauvain J.L., Bennacef S.K., Devillers L., Foukia S., Gangolf J.J. et al. Field trials of a telephone service for rail travel information. Third IEEE Workshop on Interactive Voice Technology for Telecommunications Applications. 1996 | |
[43] | Isobe T., Morishima M., Yoshitani F., Koizumi N., Murakami K. Voice-activated home banking system and its field trial. IEEE, Proceedings Fourth International Conference on Spoken Language, Vol. 3. 1996 | |
[44] | Shiomi M., Sakamoto D., Kanda T., Ishi C.T., Ishiguro H., Hagita N. Field Trial of a Networked Robot at a Train Station. Springer, International Journal of Social Robotics, Vol. 3. 2011 | |
[45] | Tian Y., Pei K., Jana S., Ray B. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. ACM, Proceedings of the 40th international conference on software engineering. 2018, ISBN 978-1-4503-5638-1 | |
[46] | Van Slype G. Critical study of methods for evaluating the quality of machine translation. Commission of European Communities Directorate General Scientific and Technical Information and Information Management. 1979, BR 19142 | |
[47] | Papineni K., Roukos S., Ward T., Zhu W.J. BLEU: a method for automatic evaluation of machine translation. Proceedings of the 40th annual meeting on association for computational linguistics. 2002 | |
[48] | Graham Y., Baldwin T. Testing for significance of increased correlation with human judgment. Association for Computational Linguistics, Conference on Empirical Methods in Natural Language Processing. 2014 | |
[49] | Kohonen T., Barna G., Chrisley R.L. Statistical pattern recognition with neural networks: benchmarking studies. IEEE, Vol. Proceedings of International Conference on Neural Networks (ICNN'88). 1988 | |
[50] | Ngan M., Grother P.J. Face recognition vendor test (FRVT) performance of automated gender classification algorithms. US Department of Commerce, National Institute of Standards and Technology. 2015 | |
[51] | Van Ginneken B., Kerkstra S., Meakin J. доступно по https://grand-challenge.org | |
[52] | Prechelt L. PROBEN1: A set of benchmarks and benchmarking rules for neural network training algorithms. Fakultaet fuer Informatik, Universitaet Karlsruhe. 1994 | |
[53] | Maier-Hein L., Eisenmann M., Reinke A., Onogur S., Stankovic M., Scholz P., Arbel T., Bogunovic H., Bradley A.P., Carass A. et al. Why rankings of biomedical image analysis competitions should be interpreted with care. Nature Communications, Vol. 9. 2018, Doi: 10.1038/s41467-018-07619-7 | |
[54] | Szegedy C., Zaremba W., Sutskever I., Bruna J., Erhan D., Goodfellow I.J., Fergus R. Intriguing properties of neural networks. IEEE, Computer Vision and Pattern Recognition. 2013 | |
[55] | Levenstein V.I. Binary Codes with Correction for Deletions and Insertions of the Symbol 1. Problemy Peredachi lnformatsii.1965 | |
[56] | Wang Z. et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, Vol. 13. 2002 | |
[57] | Kexin P., Yinzhi C., Junfeng Y., Suman J. DeepXplore: Automated Whitebox Testing of Deep Learning Systems. ACM, Proceedings of the 26th Symposium on Operating Systems Principles. 2017, ISBN 978-1-4503-5085-3 | |
[58] | Fergus R., Singh B., Hertzmann A., Roweis S.T., Freeman T.W. Removing Camera Shake from a Single Photograph. ACM, 2006, ACM SIGGRAPH 2006 Papers. 2006, ISBN 1-59593-364-6 | |
[59] | Sur F., Grediac M. Measuring the noise of imaging sensors in the presence of vibrations and illumination flickering: modeling, algorithm, and experiments. INRIA, MAGRIT, Institut Pascal. 2015, hal-01104124, RR-8672 | |
[60] | Li Y., Iwamoto Y., Ogawa K., Chen Y.-W. Computer Simulation of Image Distortion by Atmospheric Turbulence Using Time-Series Image Data with 250-Million-Pixels. IJCEE, International Journal of Computer Electrical Engineering, Vol. 10. 2018, ISSN 1793-8163 | |
[61] | Repasi E., Weiss R. Analysis of image distortions by atmospheric turbulence and computer simulation of turbulence effects. SPIE, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, Vol. 6941. 2008 | |
[62] | Gilles J., Dagobert T., De Franchis C. Atmospheric turbulence restoration by diffeomorphic image registration and blind deconvolution. Springer, Advanced Concepts for Intelligent Vision Systems, Vol. 5259. 2008, ISBN 978-3-540-88458-3 | |
[63] | Lau C.P., Lai Y.H., Lui L.M. Restoration of Atmospheric Turbulence-distorted Images via RPCA and Quasiconformal Maps. Computer Vision and Pattern Recognition. 2017 | |
[64] | Mao Y., Gilles J. Non Rigid Geometric Distortions Correction - Application To Atmospheric Turbulence Stabilization. Inverse Problems & Imaging, Vol. 6. 2012, ISSN 1930-8337 | |
[65] | Gajjar R., Zaveri T., Shukla A. Invariants based blur classification algorithm. IEEE, 5th Nirma University International Conference on Engineering. 2009 | |
[66] | P., THEUWISSEN A.J. Solid State Imaging with charge-Coupled Devices. Springer. 1995 | |
[67] | Janesick J.R. Scientific Charge-Coupled Devices. Spie Press Monograph. 2000 | |
[68] | Ishihara Y., Oda E., Tanigawa H., Teranishi N., Takeuchi E., Akiyama I. et al. Interline CCD image sensor with an anti-blooming structure, 1982 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, Vol. XXV 1982 | |
[69] | Svetkoff D.J. Image Quality Evaluation Of Machine Vision Sensors. SPIE, Optics, Illumination, and Image Sensing for Machine Vision II, Vol. 0850. 1988 | |
[70] | Nakamura J. Image sensors and signal processing for digital still cameras. Taylor & Francis. 2016 | |
[71] | Gong Y., Poellabauer C. An Overview of Vulnerabilities of Voice Controlled Systems. ArXiv. 2018, доступно по https://arxiv.org/pdf/1803.09156.pdf | |
[72] | Giechaskiel I., Rasmussen K.B. Taxonomy and Challenges of Out-of-Band Signal Injection Attacks and Defenses. ArXiv. 2019, доступно no https://arxiv.org/pdf/1901.06935.pdf | |
[73] | Vaidya T., Zhang Y., Sherr M., Shields C. Cocaine Noodles: Exploiting the Gap between Human and Machine Speech Recognition. USENIX Association, Proceedings of the 9th USENIX Conference on Offensive Technologies. 2019 | |
[74] | Carlini N., Mishra P., Vaidya T., Zhang Y., Sherr M., Shields C. et al. Hidden voice commands. USENIX Association, 2016, 25th USENIX Security Symposium. 2016, pp.513-530, ISBN 978-1-931971-32-4, доступно по https://nicholas.carlini.com/papers/2016_usenix_hiddenvoicecommands.pdf | |
[75] | Alzantot M., Balaji B., Srivastava M. Did you hear that? Adversarial examples against automatic speech recognition. ArXiv. 2018, доступно по https://arxiv.org/pdf/1801.00554.pdf | |
[76] | Taori R., Kamsetty A., Chu B., Vemuri N. Targeted adversarial examples for black box audio systems. ArXiv. 2018, доступно из: https://arxiv.org/pdf/1805.07820.pdf | |
[77] | Du T., Ji S., Li J., Gu Q., Wang T., Beyah R. Sirenattack: Generating adversarial audio for end-to-end acoustic systems. ArXiv. 2019, доступно по https://arxiv.org/abs/1901.07846 | |
[78] | Carlini N., Wagner D. Audio adversarial examples: Targeted attacks on speech-to-text. IEEE Security and Privacy Workshops. 2018 | |
[79] | Qin Y., Carlini N., Goodfellow I., Cottrell G., Raffel C. Imperceptible, Robust and Targeted Adversarial Examples for Automatic Speech Recognition. Proceedings of the 36th International Conference on Machine Learning. 2019 | |
[80] |
| |
[81] | Neekhara P., Hussain S., Pandey P., Dubnov S., Mc Cauley J., Koushnafar F. Universal Adversarial Perturbations for Speech Recognition Systems. ArXiv. 2019, доступно по https://arxiv.org/abs/1905.03828 | |
[82] | Yuan X., Chen Y., Zhao Y., Long Y., Liu X., Chen K. et al. CommanderSong: A systematic approach for practical adversarial voice recognition. USENIX Association. 2018, 27th USENIX Security Symposium USENIX Security 18. 2018, pp.49-64, доступно по https://arxiv.org/abs/1801.08535 | |
[83] | Zhang G., Yan C., Ji X., Zhang T., Zhang T., Xu W. DolphinAttack: Inaudible Voice Commands. ACM, Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017, ISBN 978-1-4503-4946-8, доступно no https://arxiv.org/pdf/1708.09537.pdf | |
[84] | Roy N., Shen S., Hassanieh H., Choudhury R.R. Inaudible voice commands: The long-range attack and defense. USENIX Association, 15th USENIX Symposium on Networked Systems Design and Implementation. 2018, ISBN 978-1-939133-01-4, доступно по https://synrg.csl.illinois.edu/papers/lipread_nsdi18.pdf | |
[85] | Roy N., Hassanieh H., Roy Choudhury R. Backdoor: Making microphones hear inaudible sounds. ACM, Proceedings of the 15th Annual International Conference on Mobile Systems, Applications and Services. 2017, ISBN 978-1-4503-6661-8 | |
[86] | Song L.P., Mittal P. Inaudible voice commands. ArXiv. 2017, доступно по https://arxiv.org/abs/1708.07238 | |
[87] | Esmaeilpour M., Cardinal P., Koerich A.L. A Robust Approach for Securing Audio Classification Against Adversarial Attacks. ArXiv. 2019, доступно по https://arxiv.org/abs/1904.10990 | |
[88] | Winskel G., The formal semantics of programming languages: an introduction. MIT Press. 1993, ISBN 9780262231695 | |
[89] | Hoare C.A. An axiomatic basis for computer programming. ACM, Communications of the ACM, Vol. 12. 1969, ISSN 0001-0782 | |
[90] | Cousot P., Cousot R. Static determination of dynamic properties of programs. Proceedings of the Second International Symposium on Programming. 1976 | |
[91] | Logozzo F., Frahndrich M. Pentagons: a weakly relational abstract domain for the efficient validation of array accesses. ACL, Proceedings of the 2008 ACM symposium on Applied computing. 2008, ISBN 978-1-59593-753-7 | |
[92] | Mine A. The octagon abstract domain. Springer, Higher-Order and Symbolic Computation, Vol. 19. 2006 | |
[93] | Mukherjee R., Schrammel P., Haller L., Kroening D., Melham T. Lifting CDCL to Templatebased Abstract Domains for Program Verification. Springer, Automated Technology for Verification and Analysis. 2017, ISBN 978-3-319-68167-2 | |
[94] | Cousot P., Halbwachs N. Automatic Discovery of Linear Restraints Among Variables of a Program. ACM, Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages. 1978 | |
[95] | Goubault E., Le Gall T., Putot S. An Accurate Join for Zonotopes, Preserving Affine Input/Output Relations. Electronic Notes in Theoretical Computer Science, Vol. 287. 2012 | |
[96] | Specht F., Otto J., Niggemann O., Hammer B. Generation of Adversarial Examples to Prevent Misclassification of Deep Neural Network based Condition Monitoring Systems for Cyber-Physical Production Systems. IEEE, 16th International Conference on Industrial Informatics. 2018 | |
[97] | ISO/IEC 2382:2015 | Information technology Vocabulary |
[98] | ISO/IEC/IEEE 15288:2015 | Software and systems engineering Systems and software engineering System life cycle processes |
[99] | ISO/IEC 25000:2014 | Systems and software engineering Systems and software Quality Requirements and Evaluation (SQuaRE) Guide to SQuaRE |
[100] | ISO/IEC/IEEE 26513:2017 | Systems and software engineering Requirements for testers and reviewers of information for users |
УДК 004.01:006.354 | ОКС 35.020 |
| |
Ключевые слова: информационные технологии, искусственный интеллект, робастность, оценка робастности, нейронные сети |
Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: ФГБУ "РСТ", 2022