Статус документа
Статус документа

ГОСТ Р 70321.6-2022

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Технологии искусственного интеллекта для обработки данных дистанционного зондирования Земли

АЛГОРИТМЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА ДЛЯ РАСПОЗНАВАНИЯ ОБЪЕКТОВ ДОРОЖНО-ТРАНСПОРТНОЙ СЕТИ НА КОСМИЧЕСКИХ СНИМКАХ, ПОЛУЧАЕМЫХ С КОСМИЧЕСКИХ АППАРАТОВ ОПТИКО-ЭЛЕКТРОННОГО НАБЛЮДЕНИЯ

Типовая методика проведения испытаний

Artificial intelligence technologies for processing of Earth remote sensing data. Artificial intelligence algorithms for recognition of objects of road networks on satellite images obtained from optical-electronic observation satellites. Typical testing procedure



ОКС 35.240.99

Дата введения 2023-01-01

Предисловие

     

1 РАЗРАБОТАН Федеральным государственным автономным образовательным учреждением высшего образования "Национальный исследовательский университет "Высшая школа экономики" (НИУ ВШЭ) и Обществом с ограниченной ответственностью "ГЕОАЛЕРТ" (ООО "ГЕОАЛЕРТ")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 164 "Искусственный интеллект"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 28 октября 2022 г. N 1209-ст

4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.rst.gov.ru)

Введение


Настоящий стандарт входит в серию стандартов "Технологии искусственного интеллекта для обработки данных дистанционного зондирования Земли".

Настоящий стандарт развивает положения ГОСТ Р 59898 применительно к оценке функциональной корректности алгоритмов искусственного интеллекта для распознавания объектов дорожно-транспортной сети на космических снимках по ГОСТ Р 59753-2021 (статья 32), получаемых с космических аппаратов оптико-электронного наблюдения в видимом и ближнем инфракрасном диапазонах.

Распознавание объектов дорожно-транспортной сети может проводиться, например:

- при территориальном планировании, землепользовании и застройке [1];

- планировке и застройке городских и сельских поселений по СП 42.13330;

- благоустройстве территорий поселений, городских округов, внутригородских районов [2];

- благоустройстве территорий муниципальных образований [3].

Настоящий стандарт разработан в целях унификации методов испытаний при оценке функциональной корректности алгоритмов искусственного интеллекта для распознавания объектов дорожно-транспортной сети на космических снимках.

     1 Область применения

Настоящий стандарт распространяется на алгоритмы искусственного интеллекта для распознавания объектов дорожно-транспортной сети (далее - алгоритмы ИИ) на космических снимках по ГОСТ Р 59753-2021 (статья 32), получаемых с космических аппаратов оптико-электронного наблюдения в видимом и ближнем инфракрасном диапазонах (далее - снимки).

Настоящий стандарт устанавливает типовую методику проведения испытаний при оценке функциональной корректности по ГОСТ Р 59898-2021 (8.2.3).

Примечание - В контексте настоящего стандарта под алгоритмами ИИ понимают алгоритмы на основе машинного обучения.

Настоящий стандарт может быть применен при испытаниях алгоритмов ИИ при проведении оценки соответствия первой, второй или третьей сторонами по ГОСТ ISO/IEC 17000.

Настоящий стандарт также может быть применен при автономных предварительных и приемочных испытаниях по ГОСТ Р 59792 алгоритмов ИИ, входящих в состав автоматизированных систем.

Настоящий стандарт предназначен для применения всеми организациями, участвующими в испытаниях алгоритмов ИИ, независимо от их вида и размера.

Типовая методика проведения испытаний алгоритмов ИИ для определения типов объектов дорожно-транспортной сети на снимках установлена в ГОСТ Р 70321.7.

     2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие документы:

ГОСТ 19.301 Единая система программной документации. Программа и методика испытаний. Требования к содержанию и оформлению

ГОСТ ISO/IEC 17000 Оценка соответствия. Словарь и общие принципы

ГОСТ ISO/IEC 17025-2019 Общие требования к компетентности испытательных и калибровочных лабораторий

ГОСТ Р 52438 Географические информационные системы. Термины и определения

ГОСТ Р 58973-2020 Оценка соответствия. Правила к оформлению протоколов испытаний

ГОСТ Р 59276 Системы искусственного интеллекта. Способы обеспечения доверия. Общие положения

ГОСТ Р 59753-2021 Данные дистанционного зондирования Земли из космоса. Термины и определения

ГОСТ Р 59754-2021 Данные дистанционного зондирования Земли из космоса. Обработка данных дистанционного зондирования Земли из космоса. Термины и определения

ГОСТ Р 59792 Информационные технологии. Комплекс стандартов на автоматизированные системы. Виды испытаний автоматизированных систем

ГОСТ Р 59795-2021 Информационные технологии. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Требования к содержанию документов

ГОСТ Р 59898-2021 Оценка качества систем искусственного интеллекта. Общие положения

ГОСТ Р 70321.7 Технологии искусственного интеллекта для обработки данных дистанционного зондирования Земли. Алгоритмы искусственного интеллекта для определения типов объектов дорожно-транспортной сети на космических снимках, получаемых с космических аппаратов оптико-электронного наблюдения. Типовая методика проведения испытаний

СП 42.13330 Градостроительство. Планирование и застройка городских и сельских поселений

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов (сводов правил) в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

     3 Термины и определения

В настоящем стандарте применены термины по ГОСТ ISO/IEC 17000, ГОСТ Р 52438, ГОСТ Р 59276, ГОСТ Р 59753, ГОСТ Р 59754, ГОСТ Р 59898.

     4 Общие положения

4.1 Объектами испытаний являются алгоритмы ИИ.

4.2 Стадии жизненного цикла, на которых проводят испытания алгоритмов ИИ, и группы лиц, осуществляющие тестирование, - по ГОСТ Р 59898-2021 (раздел 6).

4.3 Общие принципы и порядок испытаний алгоритмов ИИ - по ГОСТ Р 59898-2021 (раздел 7) с дополнениями, приведенными в настоящем стандарте.

     5 Подготовительные работы

5.1 Перед проведением испытаний алгоритмов ИИ заказчикам испытаний рекомендуется установить (не ограничиваясь):

- перечень существенных факторов (внешних воздействий), оказывающих влияние на работу алгоритмов ИИ (далее - существенные факторы) и статистические характеристики их распределений;

- требования к квалификации экспертов, выполняющих разметку снимков для тестовых наборов данных (при необходимости);

- целесообразность проведения валидации разметки тестовых наборов данных и анонимизации снимков для тестовых наборов данных;

- показатели для оценки функциональной корректности алгоритмов ИИ и их критериальные пороги.

Перед проведением оценки качества СИИ необходимо удостовериться в отсутствии существенных различий между средой проведения тестирования и средой эксплуатации, т.е. убедиться, что потенциальные различия не влияют на надежность, валидность и репрезентативность результатов тестирования.

[ГОСТ Р 59898-2021, 7.2.1.2]

Примечание - СИИ - системы искусственного интеллекта.

5.2 Подготовительные работы - по ГОСТ Р 59898-2021 (7.2.1) с дополнениями, приведенными в настоящем стандарте.

5.3 Требования к тестовым наборам данных - по ГОСТ Р 59898-2021 (9.2) с дополнениями, приведенными в настоящем стандарте.

Примечание - Описание наборов данных для тестирования - по ГОСТ Р 59898-2021 (9.1).

5.4 Дополнительные требования к тестовым наборам данных

5.4.1 Каждый образец тестового набора данных должен состоять из снимка (серии снимков) и разметки, иметь метаданные, содержащие сведения о значениях существенных факторов (см. 5.6).

5.4.2 Статистические характеристики распределений существенных факторов в тестовых наборах данных должны соответствовать статистическим характеристикам распределений существенных факторов в предусмотренных условиях эксплуатации алгоритмов ИИ.

5.4.3 Разметка снимков должна иметь пространственную привязку к соответствующему снимку.

Разметку выполняют методом наземных наблюдений или методом визуального дешифрирования.

Требования к квалификации экспертов, выполняющих разметку, устанавливают заказчики испытаний, рекомендуемый уровень квалификации - в соответствии с [4] или [5].

Разметка снимков может быть валидирована по решению заказчиков испытаний.

5.4.4 Тестовые данные могут быть анонимизированы по решению заказчиков испытаний.

Например, тестовые данные могут иметь специально нарушенную пространственную привязку, не позволяющую однозначно определить действительное пространственное расположение объектов дорожно-транспортной сети. В таком случае для взаимной привязки снимков и разметки может быть создана искусственная пространственная привязка, причем формат снимков после ее создания должен остаться без изменений.

5.4.5 Тестовые данные могут быть расширены методом аугментации и/или путем добавления новых образцов, при этом правила разметки не должны противоречить правилам, примененным при создании базового демонстрационного набора данных, но могут их дополнять.

5.4.6 Форматы снимков тестовых наборов данных должны соответствовать форматам снимков, применяемых в предусмотренных условиях эксплуатации алгоритмов ИИ.

5.5 Демонстрационные наборы данных

5.5.1 Пример базового демонстрационного набора данных для задач сегментации прилагается к настоящему стандарту, состоит из 129 папок, в каждой из которых по 1 снимку размером не менее 500500 пикселей в формате TIF и 1 файлу с разметкой в формате GEOJSON.

Примечание - Базовые демонстрационные наборы данных не обладают свойством представительности, т.е. не отражают статистические распределения существенных факторов в предусмотренных условиях эксплуатации алгоритмов ИИ (см. ГОСТ Р 59898-2021, 9.2).

Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте «Техэксперт: Лаборатория. Инспекция. Сертификация» бесплатно
Реклама. Рекламодатель: Акционерное общество "Информационная компания "Кодекс". 2VtzqvQZoVs