ГОСТ IEC TR 61340-5-5-2022
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
ЭЛЕКТРОСТАТИКА
Защита электронных устройств от электростатических явлений
ТРЕБОВАНИЯ К УПАКОВКЕ, ПРИМЕНЯЕМОЙ В ПРОИЗВОДСТВЕ ЭЛЕКТРОНИКИ
Electrostatics. Protection of electronic devices from electrostatic phenomena. Requirements to packaging used in electronic manufacturing
МКС 17.200.99
29.020
Дата введения 2022-07-01
Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"
Сведения о стандарте
1 ПОДГОТОВЛЕН Акционерным обществом "Научно-производственная фирма "Диполь" (АО "НПФ Диполь") на основе собственного перевода на русский язык англоязычной версии документа, указанного в пункте 5
2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 31 марта 2022 г. N 149-П)
За принятие проголосовали:
Краткое наименование страны по МК (ИСО 3166) 004-97 | Код страны по МК (ИСО 3166) 004-97 | Сокращенное наименование национального органа по стандартизации |
Армения | AM | ЗАО "Национальный орган по стандартизации и метрологии" Республики Армения
|
Беларусь | BY | Госстандарт Республики Беларусь
|
Киргизия | KG | Кыргызстандарт
|
Россия | RU | Росстандарт
|
Таджикистан | TJ | Таджикстандарт
|
Узбекистан | UZ | Узстандарт |
4 Приказом Федерального агентства по техническому регулированию и метрологии от 6 мая 2022 г. N 280-ст межгосударственный стандарт ГОСТ IEC TR 61340-5-5-2022 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2022 г.
5 Настоящий стандарт идентичен международному документу IEC TR 61340-5-5:2018* "Электростатика. Часть 5-5. Защита электронных устройств от электростатических явлений. Требования к упаковке, применяемой в производстве электроники" ("Electrostatics - Part 5-5: Protection of electronic devices from electrostatic phenomena - Packaging systems used in electronic manufacturing", IDT).
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.
Международный стандарт разработан Техническим комитетом по стандартизации IEC/TC 101 "Электростатика".
Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).
Дополнительные сноски в тексте стандарта, выделенные курсивом, приведены для пояснения текста оригинала
6 ВВЕДЕН ВПЕРВЫЕ
Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.
В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"
Упаковочные материалы, используемые в программе управления электростатической обстановкой на производстве (программе ЭСР-управления), часто выбираются на основании измеренного электрического сопротивления материала упаковки. Производители упаковочных материалов полагаются на стандартизованные методы испытаний, чтобы гарантировать, что поставляемые ими материалы соответствуют отраслевым требованиям. При этом упаковочные материалы обладают и другими характеристиками, которые часто трудно определить количественно, что приводит к непониманию между производителями упаковочного материала и конечными пользователями.
Распространение автоматизированного оборудования для производства электронной продукции привело к изменениям в конструкции и форме упаковочных материалов, используемых для упаковки электронных деталей и компонентов. В частности, очень маленькие компоненты, такие как резисторы и конденсаторы для поверхностного монтажа, упаковываются в катушки с ленточными носителями, так как предназначены для установки автоматическим способом. Для компонентов малых размеров требуются упаковочные материалы соответствующих размеров. Электрические свойства упаковочных материалов малых размеров невозможно оценить с помощью существующих методов испытаний, принятых в отрасли.
В электронной промышленности используется несколько типов упаковки, которые не обладают основными свойствами электростатической защиты, например, бумажная лента. В настоящем стандарте приведены лучшие современные примеры стандартных форм упаковочного материала. Описываются также другие формы упаковки для нечувствительных к электростатическому разряду компонентов, которые используются на участках, защищенных от электростатического разряда, и приводятся рекомендации по обращению с такими формами упаковки. Настоящий стандарт был подготовлен для обеспечения соответствия рекомендаций по электростатике и применению защитных мер запросам поставщиков и пользователей электронных компонентов малых размеров.
Настоящий стандарт содержит требования к упаковке для чувствительных и нечувствительных к электростатическим разрядам компонентов, которые могут быть установлены для таких типов упаковки, как несущая лента, лотки, пенальные носители (контейнеры для элементов продолговатой формы), рельсовые направляющие, и другим видам упаковки, используемым в процессах обработки и упаковывания компонентов, когда методы испытаний, описанные в других стандартах, неприменимы. Рассмотрены вопросы, связанные с возникновением электростатического заряда, электростатического притяжения и отталкивания. Рекомендации и объяснения, приведенные в настоящем стандарте, могут быть рекомендованы для других типов упаковки, свойства которых невозможно оценить другими способами.
В настоящем стандарте рассмотрены вопросы, связанные:
1) с техническими решениями по выбору упаковочного материала и создания системы упаковки;
2) техническими характеристиками упаковки для контроля электростатических явлений;
3) существующими методами испытаний и их ограничениями для упаковочных материалов;
4) рекомендациями по оцениванию свойств упаковки малых размеров;
5) общепринятыми производственными практиками.
Нормативные ссылки не используются в настоящем стандарте.
3.1 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
ИСО и МЭК поддерживают терминологическую базу данных, используемую в целях стандартизации по следующим адресам:
- электропедия МЭК: доступна по адресу http://www.electropedia.org/;
- платформа онлайн-просмотра ИСО: доступна по адресу http://www.iso.org/obp.
3.1.1 электростатическая защитная упаковка (electrostatic protective packaging): Контейнеры и другая закрытая упаковка, обладающая свойствами и функциональностью для ограничения образования электростатического заряда, рассеивания электростатического заряда или ограничения электростатических полей внутри упаковки.
3.1.2 контактная упаковка (intimate packaging): Упаковочные материалы, которые имеют прямой контакт с чувствительными к электростатическому разряду компонентами.
3.1.3 бесконтактная упаковка (proximity packaging): Упаковочные материалы или предметы, которые покрывают или окружают контактную упаковку.
3.1.4 проводящий материал (conductive material): Материал с поверхностными или объемными проводящими свойствами, характеризуемыми более низким электрическим сопротивлением, чем у рассеивающих материалов.
3.1.5 рассеивающий материал (dissipative material): Материал с поверхностными или объемными проводящими свойствами, характеризуемыми более высоким электрическим сопротивлением, чем у проводящих материалов, и более низким, чем у изоляционных материалов.
3.1.6 изоляционный материал (insulative material): Материал с достаточно высоким электрическим сопротивлением, чтобы препятствовать потоку заряда определенного значения.
3.1.7 низкая заряжаемость (low charging): антистатическое свойство материала, которое ограничивает передачу электростатического заряда при касании или разъединении (трибоэлектрический эффект).
3.1.8 поверхностное сопротивление (surface resistance): Отношение постоянного напряжения к току, протекающему между двумя электродами определенной конструкции, расположенными на одной стороне материала.
Примечание 1 - Поверхностное сопротивление выражается в омах (Ом).
3.1.9 удельное поверхностное сопротивление (surface resistivity): Для электрического тока, протекающего по поверхности, отношение падения напряжения постоянного тока на единицу длины к поверхностному току на единицу ширины.
Примечание 1 - Фактически удельное поверхностное сопротивление - это сопротивление между двумя электродами на противоположных сторонах квадрата, которое не зависит от стороны квадрата или единиц его измерения.
Примечание 2 - Удельное поверхностное сопротивление выражается в омах (Ом). Обычно удельное поверхностное сопротивление выражают в Ом/кв, чтобы отличить его от поверхностного сопротивления.
3.1.10 объемное сопротивление (volume resistance): Отношение напряжения постоянного тока на единицу толщины к количеству тока на единицу площади, проходящего через материал.
Примечание 1 - Объемное сопротивление выражается в омах (Ом).
3.1.11 экранирующие электростатический разряд материалы (electrostatic discharge shielding): Материалы, которые ослабляют электростатическое поле и ограничивают проникновение энергии, вызванное электростатическим разрядом.
3.1.12 экранирующие электростатическое поле материалы (electrostatic field shielding): Материалы, которые ослабляют электростатическое поле.
3.2 Сокращения
МЗУ - модель заряженного устройства;
КУЗП - контрольное устройство с заряженной пластиной;
УЗЭ - участок, защищенный от ЭСР;
ЭСР - электростатический разряд;
ЧЭСР-компонент - чувствительный к электростатическому разряду компонент;
МЧТ - модель человеческого тела.
4.1 Анализ электростатических рисков (когда могут возникнуть проблемы с ЧЭСР-компонентами)
Риск для электронных деталей, узлов и изделий - ЧЭСР-компонентов от электростатических явлений возможен в нескольких формах и может быть вызван прямым электростатическим разрядом от заряженного проводника до ЧЭСР-компонента или электростатическим разрядом от ЧЭСР-компонента к другому проводнику (при различных потенциалах) или земле, если ЧЭСР-компонент становится чрезмерно заряженным. Повреждение ЧЭСР-компонента всегда будет вызвано протеканием повышенного тока через ЧЭСР-компонент.
Перенос электростатического заряда (разделение заряда) будет происходить каждый раз, когда два материала соприкасаются и разделяются. В результате разделения заряда появятся равные положительный и отрицательный заряды на противоположных поверхностях. Различия при взаимодействии заключаются в том, какое количество заряда отделяется и где скапливается заряд после разделения, что в свою очередь зависит от электрических свойств материала. Заряженные материалы, способные проводить электричество, могут быть нейтрализованы путем контакта с землей (заземлением). Скорость нейтрализации/рассеивания заряда зависит от электрического сопротивления материала и контактного сопротивления между материалом и землей. Чем выше сопротивление материала и его контактное сопротивление с землей, тем больше времени потребуется для нейтрализации заряда. Положительно заряженный материал будет получать недостающие электроны от земли, в то время как с отрицательно заряженного объекта электроны будут стекать на землю.
Значение потенциала разряда, который может выдержать ЧЭСР-компонент, определяется рядом факторов, включая чувствительность компонента, схему узла, скорость передачи заряда через ЧЭСР-компонент, общую энергию разряда и влияние окружающей среды.
Разряд через ЧЭСР-компонент может произойти при контакте с заряженным проводником, включая человека, элемент используемого оборудования, ручной инструмент или прибор, или любым другим заряженным проводником, применяемым в процессе производства.
Снижение вероятности повреждающего ЧЭСР-компонент разряда является одним из основных методов электростатического контроля. Риск повреждения заряженными проводниками возможно снизить, если все проводящие материалы и инструменты будут электрически заземлены. Заземленный проводник не может удерживать электростатический заряд.