Действующий

ГОСТ Р 27.011-2019 (IEC/TR 63039:2016) Надежность в технике. Вероятностный анализ риска технических систем. Оценка интенсивности конечного события для заданного исходного состояния

Библиография

[1]

МЭК 60050-192:2015 Международный электротехнический словарь. Часть 192. Надежность (International electrotechnical vocabulary - Part 192: Dependability)

[2]

Sato Y., Henley E.J., Inoue K. An action-chain model for the design of hazard-control systems, IEEE Trans., on Reliability- Vol.-39. - No.2. - p.151-159 - 1990

[3]

Kawahara Т., Ichitsuka A., Sato Y. State transition Model of Safety-Related Systems with Automatic Diagnosis and its Formulation for Functional Safety Assessment. - IEICE Trans. - Vol.J86-A- No.3. - 241-249. - March 2003

[4]

Yoshimura I., Sato Y.: Safety-Integrity Levels Model for Safety-Related Systems in Dynamic Demand State IEICE Trans. - Vol. J86-A - No. 11. - 1188-1196. - Nov. 2003

[5]

Yoshimura I., Sato Y. Safety Achieved by the Safe Failure Fraction (SFF) inlEC 61508, IEEE Trans, on Reliability. - Vol.57. - No.4. - 662-669. - Dec. 2008

[6]

Yoshimura I., Sato Y. Estimation of Calendar-Time- and Process-Operative-TimeHazardous-Event Rates for the Assessment of Fatal Risk Int. Jour, of Performability Engineering Vol.5 No. 4 July 2009. - 377-386

[7]

Takeichi M., Suyama K., Sato Y. Functional Safety Assessment of Air Bag Systemsfor Automobiles Trans. Soc. of Automotive Engs. of Japan. - Vol.44. - No.2. - 627-633. - March 2013

[8]

Kushibiki T., Sato. Y. Functional Safety Assessment of the Motor Vehicles Steer-byWire Systems with both Faults Detectable only by Demands and Commission FaultsJSMETrans.(C). - Vol.76. - No.762. - 388-396. - Feb. 2010

[9]

Takeichi M., Suyama K., Sato Y. Functional Safety Assessment of Pre-CrashSystems for Reciprocal Hazards, JSME Trans. (C), - Vol.79. - No.806. - 3839-3853. - Oct. 2013

[10]

Vesely W.E., Narumu R.E. PREP and KITT - Computer cords for automatic evaluation of fault trees. - IN-1349. - 1970

[11]

Henley E.J., Kumamoto H. Reliability Engineering and Risk Assessment.- EnglewoodCliffs. - Prentice Hall. - 1981

[12]

Sato Y., Inoue K., Kumamoto H., The safety assessment of human-robot systems (3rd Report). On the quantification of consecutive failure logic. - Bulletin of JSME. - Vol.29, No.257. - Nov., 3945-3951. - 1986

[13]

Fussell J.B., Aber E.F., Rahl R.G. On the quantitative analysis of priority AND failurelogic. - IEEE Trans. Reliability. - Vol.R-25 - No.5 - 324-326, 1976

[14]

Yoshimura I., Sato Y. Safety-Integrity Levels of Safety-Related System with Selfdiagnosis Functions in Dynamic Demand State. - Jour. Reliability Engineering Association of Japan. -Vol.151. - No.3. - 219-227. - May 2006

[15]

Yoshimura I., Sato Y. Estimation of Hazardous Event Rate for Safety-Related Systems with Self-diagnosis Function. - Jour. Japan Society for Safety Engineering. - Vol.46. - No.1. - 16-23. - Jan. 2007

[16]

Yoshimura I., Sato Y., Suyama K. Safety Integrity Level Model for Safety-related Systems in Dynamic Demand State, Proceedings of the 2004 Asian International Workshop on Advanced Reliability Modelling (AIWARM 2004). - Hiroshima. - 577-584. - 2004

[17]

Shimodaira T., Sato Y., Suyama K. Estimation of Hazardous Event Rate for Repairable 1-out-of-2 Safety-Related Systems Based on State transition Models. - IEICE Trans. - Vol.J88 - A. - No.8. - 962-973. - Aug. 2005

[18]

Muta H., Sato Y. Functional Safety Assessment of Safety-related Systems with Nonperfect Proof-tests. - IEICE Trans, on Fundamentals of Electronics, Communications and Computer Sciences. - Vol. E97-A. - No. 8. - 1739-1746 - Aug. 2014

[19]

Misumi Y, Sato Y., Estimation of average hazardous-event-frequency for allocation of safety-integrity, Reliability Engineering & System Safety. - 66(1999). - 135-144. - 1999

[20]

Shimodaira T, Sato Y., Suyama K. Estimation of Average Hazardous-Event Rate for Steady-State Demands and Determination of SIL, JSME Trans. (C). - Vol.72. - No.715. - 953-959. - March 2006


УДК 62-192:658.51.011:658.562:623:006.354

ОКС 03.120.01, 03.120.30

Ключевые слова: надежность в технике, состояние, событие, частота события, интенсивность события, вероятностный анализ риска



Электронный текст документа

подготовлен АО "Кодекс" и сверен по:

официальное издание

М.: Стандартинформ, 2020