2.1 пространство элементарных событий; : Множество всех возможных исходов. | en | sample space |
fr | espace | |
Пример 1 - Рассмотрим время, за которое разряжается батарея, приобретенная потребителем. Если батарея разряжена еще до первого использования, то время разрядки считают равным нулю. Если батарея функционирует некоторое время, то время разрядки указывают в часах. Таким образом, пространство элементарных событий состоит из следующих исходов: {батарея разряжена до первого использования} и {батарея функционировала до разрядки x часов, где x более или равно нулю}. Настоящий пример и далее использован в данном разделе. В частности, обсуждение этого примера приведено в 2.68. Примечание 1 - Исходами могут быть результаты реального или гипотетического эксперимента. Множество исходов может быть явно предъявленным списком, счетным множеством, например таким, как положительные целые числа {1, 2, 3, ...} или действительная прямая. Примечание 2 - Пространство элементарных событий является первым компонентом вероятностного пространства (2.68). | ||
2.2 событие; A: Подмножество пространства элементарных событий (2.1). | en | event |
Пример 1 - Продолжая пример 1 из 2.1, следующие примеры событий {0}, (0, 2), {5,7}, [7, ) соответствуют описаниям: "батарея разряжена до первого использования", "батарея изначально работала и разрядилась до того, как прошло 2 ч с начала использования", "батарея функционировала точно 5,7 ч" и "после 7 ч использования батарея еще функционирует". Исходы {0} и {5,7} представляют собой множества, состоящие из одной точки; исход (0, 2) - открытый интервал действительной прямой; исход [7, ) - замкнутый слева бесконечный интервал действительной прямой. Примечание - Предположительно в результате эксперимента произошло некоторое событие, если получен исход, принадлежащий данному событию. События принадлежат сигма-алгебре событий (2.69) - второму компоненту вероятностного пространства (2.68). События естественным образом возникают в контексте азартных игр (покер, рулетка и т.д.), в которых число исходов определяет планы на выигрыш. | fr | |
2.3 дополнительное событие; ; противоположное событие: Все пространство элементарных событий (2.1), за исключением события (2.2). | en | complementary event |
fr | ||
Пример 1 - В примере 1 из 2.1 дополнительным событием к событию {0} является событие (0, ), т.е. дополнением к событию "батарея изначально не функционирует". Подобным образом событие [0,3) соответствует тому, что "либо батарея изначально не функционировала, либо она функционировала менее 3 ч". Дополнительное событие [3,) заключается в том, что "батарея работала 3 ч и время ее функционирования составляет более 3 ч". Примечание 1 - Дополнительное событие дополняет событие до пространства элементарных событий. Примечание 2 - Дополнительное событие также является событием. Примечание 3 - Для события дополнительное событие часто обозначают символом . Примечание 4 - Во многих случаях легче найти вероятность дополнительного события, чем самого события. Например, событию "в случайной выборке объема 10, отобранной из генеральной совокупности объема 1000, для которой предполагаемый процент дефектов составляет единицу, встречается по крайней мере один дефект", соответствует очень большое число элементарных исходов. Гораздо легче работать с дополнительным событием "не обнаружено ни одного дефекта". | ||
2.4 независимые события: Пара событий (2.2) таких, что вероятность (2.5) пересечения этих событий равна произведению их вероятностей. | en | independent events |
Пример 1 - Бросают две игральные кости, красную и белую, таким образом, что число возможных элементарных исходов равно 36, вероятность каждого элементарного исхода равна 1/36. Событие состоит в том, что сумма числа точек на выпавших сторонах белой и красной костей равна i. Событие W состоит в том, что на белой кости выпала единица. События и W независимы, в то время как события и W не являются независимыми для i=2, 3, 4, 5 или 6. События, которые не являются независимыми, называют зависимыми событиями. | fr |
|
Примечание - Приведенное определение дано для случая двух событий, но может быть расширено. Для событий и условием независимости является . Для трех событий , и условиями независимости являются следующие: В общем случае, если число событий более двух, события , , ..., независимы, если вероятность пересечения любого заданного подмножества событий равна произведению вероятностей отдельных событий, данное условие имеет отношение ко всем без исключения подмножествам. Существуют примеры таких ситуаций, когда каждые два события попарно независимы, но три события не являются независимыми (т.е. есть попарная независимость, но общая независимость событий отсутствует). | ||
2.5 вероятность события; A, P(A): Действительное число из замкнутого промежутка [0, 1], приписываемое событию (2.2). | en | probability of an event |
Пример - В примере 2 из 2.1 вероятность события может быть найдена как сумма вероятностей всех элементарных исходов, составляющих событие. Если вероятности всех 45 элементарных исходов совпадают, каждый из них имеет вероятность 1/45. Вероятность события может быть найдена путем подсчета всех соответствующих событию элементарных исходов и последующего деления этого числа на 45. Примечание 1 - Вероятностная мера (2.70) обеспечивает присвоение действительного числа каждому рассматриваемому событию, заданному на пространстве элементарных исходов. Для отдельного события вероятностная мера задает вероятность, связанную с этим событием. Другими словами, задает полный набор назначений для всех событий, тогда как вероятность представляет собой одно конкретное значение, приписанное отдельному событию. Примечание 2 - В данном определении вероятность рассматривают как вероятность отдельного события. Вероятность может быть связана с относительной частотой реализации события в длинной серии наблюдений или со степенью уверенности в возможной реализации события. Как правило, вероятность события обозначают символом . Запись , использующая рукописную букву , применяют в том случае, когда необходимо подробно рассмотреть формальное описание вероятностного пространства (2.68). | fr | d’un |
2.6 условная вероятность; : Вероятность (2.5) пересечения событий А и В, деленная на вероятность события В. | en | conditional probability |
Пример 1 - В рамках примера 1 (2.1) пусть событие (2.2) A определено как {батарея функционирует по крайней мере 3 ч}, т.е. ему соответствует интервал [3, ). Пусть событие B определено как {батарея изначально функционировала}, т.е. ему соответствует интервал (0, ). При определении условной вероятности вероятность события при условии реализации события учитывает то, что рассматривают только изначально функционирующие батареи. Примечание 1 - Необходимо, чтобы вероятность события была более нуля. Примечание 2 - Используемое выражение " при условии " может быть записано более развернуто: "событие при условии реализации события ". Вертикальная черта в символе условной вероятности произносится как "при условии". Примечание 3 - Если условная вероятность события при условии реализации события равна вероятности реализации события А, то события и независимы. Другими словами, знание о реализации события не влияет на вероятность события . | fr | conditionnelle |
2.7 функция распределения (случайной величины X); F(x): Функция , задающая вероятность (2.5) события (2.2) (, ]. | en | distribution function of a random variable X | ||||
Примечание 1 - Полуинтервал (, ] представляет собой множество всех значений менее , включая . | fr | fonction de d’une variable X | ||||
Примечание 2 - Функция распределения полностью описывает распределение вероятностей (2.11) случайной величины (2.10). Классификация распределений так же, как и классификация случайных величин на дискретные и непрерывные, основана на классификации функций распределения. Примечание 3 - Так как значениями случайных величин являются действительные числа или упорядоченные наборы действительных чисел, в определении функции распределения неявно подразумевается, что является действительным числом или упорядоченным набором из действительных чисел. Функция распределения многомерного распределения (2.17) задает вероятность (2.5) того, что каждая из случайных величин многомерного распределения менее или равна заданному значению. Многомерную функцию распределения записывают следующим образом: . Функция распределения является неубывающей функцией. В одномерном случае функция распределения, определенная как , задает вероятность того, что случайная величина принимает значение менее или равное . Примечание 4 - Обычно функции распределения подразделяют на функции дискретных распределений (2.22) и функции непрерывных распределений (2.23), хотя это подразделение не исчерпывает все возможные случаи. Так, в примере со временем функционирования батареи, приведенном в 2.1, функция распределения может иметь следующий вид: При таком задании функции распределения время функционирования батареи принимает неотрицательные значения. С вероятностью 0,1 батарея не будет функционировать при начальном использовании. Если батарея изначально функционировала, то время функционирования батареи имеет экспоненциальное распределение (2.58) с математическим ожиданием, равным 1 ч. Примечание 5 - Иногда применяют англоязычную аббревиатуру для обозначения функции распределения cdf (англ. "cumulative distribution function" - кумулятивная функция распределения). | ||||||
2.8 семейство распределений: Множество распределений вероятностей (2.8). | en | family of distributions | ||||
Примечание 1 - Множество распределений вероятностей часто индексируют с помощью параметра (2.9) функции распределения. Примечание 2 - Математическое ожидание (2.35) и/или дисперсию (2.36) распределения вероятностей часто используют для идентификации семейства распределений или для частичной идентификации, если для описания семейства распределений необходимо использовать более двух параметров. В некоторых случаях математическое ожидание и дисперсия представляют собой не явные параметры семейства распределений, а функции других параметров. | fr | famille de distributions | ||||
2.9 параметр: Признак семейства распределений (2.8). | en | parameter | ||||
Примечание 1 - Параметр может быть одномерным или многомерным. Примечание 2 - Иногда некоторые параметры называют параметрами положений, особенно в тех случаях, когда параметр непосредственно связан с математическим ожиданием семейства распределений. Некоторые параметры называют параметрами масштаба, особенно если такой параметр равен или пропорционален стандартному отклонению (2.37) распределения. Параметры, не являющиеся параметрами положения или параметрами масштаба, как правило, называют параметрами формы. | fr | |||||
2.10 случайная величина: Функция, определенная на пространстве элементарных событий (2.1), значениями которой являются упорядоченные наборы действительных чисел. | en | random variable | ||||
Примечание 1 - Запись - пример упорядоченного набора из компонент. Другими словами, упорядоченный набор из данных представляет собой -мерный вектор (вектор-столбец или вектор-строку). Примечание 2 - Размерность случайной величины часто обозначают латинской буквой . Если 1, то случайная величина является одномерной или имеет размерность один. При 1 речь идет о многомерной случайной величине. Когда размерность задана числом , случайную величину называют -мерной. Примечание 3 - Одномерная случайная величина - это функция, значениями которой являются действительные числа; она определена на пространстве элементарных событий (2.1), которое является одной из составляющих вероятностного пространства (2.68). Примечание 4 - Случайную величину, значениями которой являются упорядоченные пары действительных чисел, называют двумерной. Определение расширяет упорядоченные (пары) действительных чисел упорядоченного набора -мерных данных. Примечание 5 - Компонент с номером -мерной случайной величины представляет собой одномерную случайную величину (соответствующую только данному компоненту). Для компонента с номером -мерной случайной величины вероятностным пространством является пространство, в котором события (2.2) определены только в терминах данного рассматриваемого компонента. | fr | variable | ||||
2.11 распределение (вероятностей): Вероятностная мера (2.70), индуцированная случайной величиной (2.10). | en | probability distribution, distribution | ||||
Пример - В примере с батареей, введенном в 2.1, распределение времени работы батареи полностью описывает вероятности возникновения установленных значений. Но невозможно с уверенностью определить ни время отказа данной батареи, ни даже то, будет ли она функционировать при начальном использовании. Вероятностное распределение полностью описывает вероятностные свойства неопределенности результата. В примечании 4 к 2.7 приведено одно из возможных представлений распределения вероятностей, а именно функция распределения. Примечание 1 - Существуют многочисленные, математически эквивалентные представления распределения, к ним относятся функция распределения (2.7), функция плотности распределения (2.27) [если существует] и характеристическая функция. Данные представления с различными уровнями сложности позволяют определять вероятность, с которой случайная величина принимает значения в заданном диапазоне. Примечание 2 - Так как случайная величина представляет собой функцию, заданную на подмножествах пространства элементарных событий и принимающую значения на действительной оси, то, например, вероятность того, что случайная величина примет некоторое действительное значение, равна единице. В примере с батареей 1. Во многих случаях проще работать со случайной величиной и одним из ее представлений, чем исследовать лежащую в основе представления вероятностную меру. Однако при переходе от одного представления к другому вероятностная мера обеспечивает непротиворечивость этих представлений. Примечание 3 - Если случайная величина одномерна, то говорят об одномерном распределении вероятностей. Если случайная величина двумерна, говорят о двумерном распределении вероятностей. Если случайная величина имеет более двух компонент, говорят о многомерном распределении вероятностей. | fr | loi de , distribution | ||||
2.12 математическое ожидание: Интеграл функции случайной величины (2.10) по вероятностной мере (2.70) на пространстве элементарных событий (2.1). | en | expectation | ||||
Примечание 1 - Математическое ожидание функции от случайной величины обозначают и вычисляют следующим образом: , где - соответствующая функция распределения. Примечание 2 - Латинская буква "" в обозначении * соответствует английскому "expected value" (ожидаемое значение) или "expectation" (ожидание) случайной величины . Знак можно рассмотреть как обозначение оператора или функции, отображающей случайную величину в действительное число после необходимых вычислений, представленных выше. ________________ * Текст документа соответствует оригиналу. - Примечание изготовителя базы данных. Примечание 3 - Для дано два представления в виде интеграла. В первом интегрирование производят по пространству элементарных событий, что теоретически обосновано, но не используется на практике по причине неудобства работы с самими событиями (например, если они заданы в виде словесных формулировок). Второе представление, где интегрирование производят по , более приемлемо для практического использования. Примечание 4 - На практике приведенный выше интеграл представляют в более удобной для вычисления форме. Примеры представлены в примечаниях к терминам: момент порядка (2.34), где ; среднее (2.35), где и дисперсии (2.36), где . Примечание 5 - Данное определение не ограничено одномерными интегралами, как можно было бы предположить из приведенных примеров и замечаний. Ситуации более высоких размерностей представлены в 2.43. Примечание 6 - Для дискретной случайной величины (2.28) второй интеграл, приведенный в примечании 1, заменяют на символ суммирования. Примеры могут быть найдены в 2.35. | fr |
| ||||
2.13 квантиль уровня p; фрактиль уровня ; ; : Значение , равное нижней границе множества значений , таких, что функция распределения (2.7) равна или превышает значение при . | en | p-quantile, | ||||
Пример 1 - Рассмотрим биномиальное распределение (2.46) с функцией распределения вероятностей, представленной в таблице 2. Данное множество значений соответствует биномиальному распределению параметрами n=6 и p=0,3. Для данного случая рассмотрены некоторые р-квантили: | fr | quantile d’ordre p, fractile d’ordre p | ||||
X | P[X=x] | P[Xx] | P[X>x] | |||
0 | 0,117649 | 0,117649 | 0,882351 | |||
1 | 0,302526 | 0,420175 | 0,579825 | |||
2 | 0,324135 | 0,744310 | 0,255690 | |||
3 | 0,185220 | 0,929530 | 0,070470 | |||
4 | 0,059535 | 0,989065 | 0,010935 | |||
5 | 0,010206 | 0,999271 | 0,000729 | |||
6 | 0,000729 | 1,000000 | 0,000000 | |||
Пример 2 - Рассмотрим стандартное нормальное распределение (2.51), в таблице 3 представлены отдельные значения его функции распределения. | ||||||
Значения такие, что P[Xx]=p | ||||||
0,1 | -1,282 | |||||
0,25 | -0,674 | |||||
0,5 | 0,000 | |||||
0,75 | 0,674 | |||||
0,84134475 | 1,000 | |||||
0,9 | 1,282 | |||||
0,95 | 1,645 | |||||
0,975 | 1,960 | |||||
0,99 | 2,326 | |||||
0,995 | 2,576 | |||||
0,999 | 3,090 |
Так как распределение X непрерывно, то вторая колонка таблицы также могла бы иметь заглавие. Значения x такие, что P[X<x]=p. Примечание 1 - Для непрерывных распределений (2.23) при , равном 0,5, квантиль уровня 0,5 соответствует медиане (2.14). Для , равного 0,25, квантиль уровня 0,25 называют нижним квартилем. Для непрерывных распределений 25% распределения лежат ниже уровня квантиля 0,25, а 75% выше его. Для , равного 0,75, соответствующий квантиль уровня 0,75 называют верхним квартилем. Примечание 2 - В общем случае , %, распределения лежат ниже квантиля уровня , а % распределения выше этого квантиля. Существует сложность в определении медианы дискретного распределения, так как несколько значений могут удовлетворять определению медианы. Примечание 3 - Если - непрерывная строго возрастающая функция, то квантиль уровня является решением уравнения . В данном случае слова "нижняя граница" в определении могут быть заменены на "минимум". Примечание 4 - Если на некотором промежутке функция распределения постоянна и равна , то все значения данного промежутка являются квантилями уровня для . Примечание 5 - Квантили уровня определены для одномерных распределений (2.16). | ||
2.14 медиана: Квантиль уровня 0,5 (2.13). | en | median |
Пример - Для примера с батареей из примечания 4 к 2.7 медиана составляет 0,5878; данное значение найдено как решение относительно x уравнения 0,1+0,9[1-exp(-x)]=0,5. Примечание 1 - На практике медиана - наиболее часто применяемый квантиль (2.13). Медиана непрерывного одномерного распределения (2.16) - это такое значение, что половина значений в генеральной совокупности (1.1) более или равна ему, а другая половина значений менее или равна этому значению. Примечание 2 - Медиана определена для одномерного распределения (2.16). | fr | |
2.15 квартиль: Квантиль уровня 0,25 (2.13) или 0,75. | en | quartile |
Пример - Для примера с батареей из 2.14 можно показать, что квантиль уровня 0,25 составляет 0,1823, а квантиль уровня 0,75 - 1,2809. Примечание 1 - Квантиль уровня 0,25 также называют нижним квартилем, а квантиль уровня 0,75 - верхним квартилем. Примечание 2 - Квартили определены для одномерного распределения (2.16). | fr | quartile |
2.16 одномерное распределение (вероятностей): Распределение (2.11) единственной случайной величины (2.10). | en | univariate probability distribution, univariate distribution |
Примечание - Одномерные распределения являются распределениями одной переменной. Примерами таких распределений могут быть биномиальное распределение (2.46), распределение Пуассона (2.47), нормальное распределение (2.50), гамма-распределение (2.56), -распределение (2.53), распределение Вейбулла (2.63) и бета-распределение (2.59). | fr | loi de une variable, distribution une variable |
2.17 многомерное распределение (вероятностей): Распределение (2.11) двух или более случайных величин (2.10). Примечание 1 - Для распределения в точности двух случайных величин прилагательное "многомерное" обычно заменяют на "двумерное". Распределение одной случайной величины, как упомянуто ранее, называют одномерным распределением (2.16). Так как рассматривают распределение одной случайной величины, то, если не указано иное, предполагают, что распределение является одномерным. | en | multivariate probability distribution, multivariate distribution |
Примечание 2 - Многомерное распределение иногда называют совместным распределением. Примечание 3 - Полиномиальное распределение (2.45), двумерное нормальное распределение (2.65) и многомерное нормальное распределение (2.64) - примеры многомерных распределений, представленных в настоящем стандарте. | fr | loi de plusieurs variables, distribution plusieurs variables |
2.18 частное распределение (вероятностей): Распределение вероятностей (2.11) заданного непустого подмножества множества компонент случайной величины (2.10). | en | marginal probability distribution, marginal distribution |
Примечание 1 - Для совместного -мерного распределения примером частного распределения является распределение вероятностей -мерного подмножества случайных величин, где . Примечание 2 - Для непрерывного (2.23) многомерного распределения (2.17), заданного его функцией плотности распределения (2.26), функцией плотности распределения частного распределения является интеграл от функции плотности исходного распределения, взятый по области изменения величин, не рассматриваемых в частном распределении. Примечание 3 - Для дискретного (2.22) многомерного распределения, представленного его функцией распределения (2.24), функцию распределения частного распределения определяют суммированием функции распределения по области изменения величин, не рассматриваемых в частном распределении. | fr | loi de marginale distribution marginale |
2.19 условное распределение (вероятностей): Распределение (2.11), ограниченное непустым подмножеством пространства элементарных событий (2.1) и скорректированное таким образом, что общая вероятность событий на данном подмножестве составляет единицу. | en | conditional probability distribution, conditional distribution |
Пример 1 - В примере с батареей, рассмотренном в примечании 4 из 2.7, условное распределение времени работы батареи при условии изначального функционирования батареи является экспоненциальным (2.58). Примечание 1 - Например, для распределения двух случайных величин и существуют условные распределения для и условные распределения для . Распределение при условии, что является условным распределением для заданного , а распределение при условии, что , является условным распределением для заданного . Примечание 2 - Частное распределение (2.18) следует рассматривать как безусловное распределение. Примечание 3 - Представленный выше пример 1 иллюстрирует ситуацию, когда одномерное распределение скорректировано условиями, накладываемыми другим одномерным распределением (отличным от первого). Напротив, для экспоненциального распределения условное распределение того, что батарея откажет в следующий час функционирования, при условии, что в течение предыдущих 10 ч она не отказала, также является экспоненциальным с тем же параметром. Примечание 4 - Условные распределения могут возникать для некоторых дискретных распределений в том случае, когда отдельные исходы являются невозможными. Например, распределение Пуассона может служить моделью распределения числа больных раком среди людей, имеющих опухоли. Примечание 5 - Условные распределения появляются при ограничении пространства элементарных событий до его конкретного подмножества. Для , имеющих двумерное нормальное распределение (2.65), можно рассмотреть условное распределение , где множество элементарных исходов ограничено единичным квадратом размером [0,1][0,1]. Другим возможным ограничением распределения может быть условие, что . Данный случай соответствует, например, ситуации, когда некоторый показатель достиг определенной границы и необходимо изучить свойства, появившиеся при достижении этой границы. | fr | loi de conditionnelle distribution conditionnelle |
2.20 кривая регрессии: Набор значений математических ожиданий (2.12) условного распределения (2.19) случайной величины (2.10) для заданных значений случайной величины . | en | regression curve |
Примечание - Кривая регрессии определена в предположении, что имеет двумерное распределение (см. примечание 1 к 2.17). Следовательно, данное понятие отлично от имеющегося в регрессионном анализе, где зависит от заданного множества значений. | fr | courbe de |
2.21 поверхность регрессии: Набор значений математических ожиданий (2.12) условного распределения (2.19) случайной величины (2.10) для заданных значений случайных величин и. | en | regression surface |
Примечание - Как и 2.20, поверхность регрессии определена в предположении, что величина имеет многомерное распределение (2.17). Как и понятие кривой регрессии, понятие поверхности регрессии принципиально отличается от поверхности отклика в регрессионном анализе. | fr | surface de |
2.22 дискретное распределение (вероятностей): Распределение (2.11), для которого пространство элементарных событий (2.1) конечно или счетно. | en | discrete probability distribution, discrete distribution |
Примечание 1 - Термин "дискретное" подразумевает, что пространство элементарных событий может быть задано в виде конечного списка либо в виде начала бесконечного списка, для которого понятен способ получения следующего элемента списка, например количество дефектов может быть представлено рядом 0, 1, 2. Примером распределения, соответствующего конечному пространству элементарных событий {0,1,2,...,}, является биномиальное распределение; примером распределения, соответствующего бесконечному счетному пространству элементарных событий {0,1,2,...,}, - распределение Пуассона. Примечание 2 - В статистическом приемочном выборочном контроле случаи, когда данные имеют качественную характеристику, свидетельствуют о том, что данные соответствуют дискретному распределению. Примечание 3 - Областью значений функции распределения (2.7) дискретного распределения является дискретное множество. | fr | loi de discrete, distribution |
2.23 непрерывное распределение (вероятностей): Распределение (2.11), для которого функция распределения (2.7) от может быть представлена в виде интеграла от неотрицательной функции по интервалу от до . | en | continuous probability distribution, continuous distribution |
Примечание 1 - Примеры непрерывных распределений: нормальное распределение (2.50), стандартное нормальное распределение (2.51), -распределение (2.53), -распределение (2.55), гамма-распределение, -распределение (2.57), экспоненциальное распределение (2.58), бета-распределение (2.59), равномерное распределение (2.60), распределение экстремальных значений первого типа (2.61), распределение экстремальных значений второго типа (2.62), распределение экстремальных значений третьего типа (2.63) и логнормальное распределение (2.52). Примечание 2 - Неотрицательная функция, упоминаемая в определении, является функцией плотности распределения (2.62). Утверждение, состоящее в том, что функция распределения везде дифференцируема, является чрезмерно ограничительным. Однако при практическом рассмотрении многие часто используемые непрерывные распределения обладают тем свойством, что производная функции распределения является соответствующей функцией плотности распределения. Примечание 3 - В статистическом приемочном выборочном контроле случаи, когда данные имеют количественную характеристику, свидетельствуют о том, что данные соответствуют непрерывному распределению вероятностей. | fr | loi de continue, distribution continue |
2.24 функция вероятности: (Для дискретного распределения) функция, задающая вероятность (2.5) того, что случайная величина (2.10) равна заданному значению. | en | probability mass function |
Пример 1 - Функция вероятности, описывающая случайную величину X, равную числу выпадения "орлов" при бросании трех "идеальных" монет, имеет вид: Примечание 1 - Функция вероятности может быть задана в виде , где - случайная величина, - заданное значение и - соответствующая вероятность. Примечание 2 - Функция вероятности введена в примере с квантилем уровня (пример 1 к 2.13) для биномиального распределения (2.46). | fr | fonction de masse de |
2.25 мода функции вероятности: Значение, при котором функция вероятности (2.24) достигает локального максимума. | en | mode of probability mass function |
Пример - Биномиальное распределение (2.46) для n=6 и p=1/3 является унимодальным с модой, равной трем. Примечание - Дискретное распределение (2.22) является унимодальным, если его функция вероятности имеет единственную моду, двухмодальным, если его функция вероятности имеет ровно две моды, и мультимодальным, если число мод функции вероятности более двух. | fr | mode de fonction de masse de |
2.26 функция плотности распределения (вероятностей); f(x); плотность распределения: Неотрицательная функция, при интегрировании которой по интервалу от до получают функцию распределения (2.7) непрерывного распределения (2.23) в точке . | en | probability density function |
Примечание 1 - Если функция распределения непрерывно дифференцируемая, то функцией плотности распределения является для тех , в которых существует производная. Примечание 2 - Графическое представление предполагает такие описания, как симметричная, заостренная, имеющая тяжелые хвосты, унимодальная, бимодальная (двухмодальная) и т.п. График , совмещенный с гистограммой, дает визуальное представление о согласованности подобранного распределения и данных. Примечание 3 - Для функции плотности распределения часто используют английскую аббревиатуру - pdf (англ. "probability density function"). | fr | fonction de de |
2.27 мода функции плотности распределения (вероятностей): Значение, где функция плотности распределения (2.26) достигает локального максимума. | en | mode of probability density function |
Примечание 1 - Непрерывное распределение (2.23) является унимодальным, если его функция плотности распределения имеет одну моду, двухмодальным, если его функция плотности распределения имеет две моды, и мультимодальным, если его функция плотности распределения имеет более двух мод. Примечание 2 - Распределение, у которого моды составляют связное множество, также называют унимодальным. | fr | mode de fonction de de |
2.28 дискретная случайная величина: Случайная величина (2.10), имеющая дискретное распределение (2.22). | en | discrete random variable |
Примечание - В настоящем стандарте рассмотрены дискретные случайные величины, подчиняющиеся биномиальному (2.46), пуассоновскому (2.47), гипергеометрическому (2.48) и полиномиальному (2.45) распределениям. | fr | variable |
2.29 непрерывная случайная величина: Случайная величина (2.10), имеющая непрерывное распределение (2.23). | en | continuous random variable |
Примечание - В настоящем стандарте рассмотрены непрерывные случайные величины, подчиняющиеся нормальному распределению (2.50), стандартному нормальному распределению (2.51), -распределению (2.53), -распределению (2.55), гамма-распределению (2.56), -распределению (2.57), экспоненциальному распределению (2.58), бета-распределению (2.59), равномерному распределению (2.60), распределению экстремальных значений первого типа (2.61), распределению экстремальных значений второго типа (2.62), распределению экстремальных значений третьего типа (2.63), логнормальному распределению (2.52), многомерному нормальному распределению (2.64) и двумерному нормальному распределению (2.65). | fr | variable continue |
2.30 центрированное распределение: Распределение (2.11) центрированной случайной величины (2.31). | en | centred probability distribution |
fr | loi de | |
2.31 центрированная случайная величина: Случайная величина, представляющая собой разность случайной величины (2.10) и ее среднего (2.35). | en | centred random variable |
Примечание 1 - Центрированная случайная величина имеет математическое ожидание, равное нулю. Примечание 2 - Данный термин применим только к случайным величинам, имеющим среднее. Например, среднее для -распределения (2.53) с одной степенью свободы не существует. Примечание 3 - Если случайная величина имеет среднее (2.35), равное , то соответствующей центрированной случайной величиной является , имеющая среднее, равное нулю. | fr | variable |
2.32 стандартизованное распределение: Распределение (2.11) стандартизованной случайной величины (2.33). | en | standardized probability distribution |
fr | loi de | |
2.33 стандартизованная случайная величина: Центрированная случайная величина (2.31), стандартное отклонение (2.37) которой равно единице. | en | standardized |
Примечание 1 - Случайная величина (2.10) автоматически является стандартизованной, если ее среднее равно нулю, а стандартное отклонение - единице. Равномерное распределение на интервале (-3, 3) имеет среднее, равное нулю, и стандартное отклонение, равное единице. Стандартное нормальное распределение (2.51) является стандартизованным. Примечание 2 - Если распределение (2.11) случайной величины имеет среднее (2.35) и стандартное отклонение , то соответствующей стандартизованной случайной величиной является величина . | fr | variable |
2.34 момент порядка r; -й момент: Математическое ожидание (2.12) -й степени случайной величины (2.10). | en | moment of order r, rth moment |
Пример - Пусть случайная величина имеет функцию плотности распределения (2.26) f(x)=exp(-x) для x>0. С помощью базовых приемов интегрирования (интегрирование по частям) получаем E(X)=1, =2, =6 и =24 или в общем случае . Это распределение является экспоненциальным распределением (2.58). Примечание 1 - В одномерном дискретном случае соответствующая формула имеет следующий вид:
. Примечание 2 - Если случайная величина является -мерной, то ее -ю степень определяют покомпонентно. Примечание 3 - Рассмотренные моменты случайной величины используют возведение в степень . В общем случае могут быть рассмотрены моменты порядка величин или . | fr | moment d’ordre r |
2.35 среднее | en | means |
fr | moyennes | |
2.35.1 среднее; момент порядка 1; : Для непрерывного распределения момент порядка , где равно единице, вычисленный как интеграл от произведения и функции плотности распределения (2.26), по множеству действительных чисел. | en | mean, moment of order 1 |
Примечание 1 - Среднее непрерывного распределения (2.23) обозначают символом и вычисляют как . Примечание 2 - Среднее существует не для всех случайных величин (2.10). Например, если имеет функцию плотности распределения , интеграл, соответствующий , расходится. | fr | moyenne, moment d’ordre 1 |
2.35.2 среднее; : Для дискретного распределения сумма произведений и функции вероятности (2.24) . | en | mean |
fr | moyenne de | |
Пример 1 - Пусть дискретная случайная величина X (2.28) представляет собой число выпадений "орлов" при бросании трех "идеальных" монет. Функция распределения имеет следующий вид: Примечание - Среднее дискретного распределения (2.22) обозначают и вычисляют по формуле
|