Основные принципы повышения надежности объекта одинаковы для процесса проектирования и испытаний. Это обусловлено тем, что оба этапа предполагают выявление и устранение слабых мест с целью улучшения объекта и позволяют оценить улучшение путем сравнения оценки показателя надежности с целевым значением. Разница заключается в методах, используемых для проведения анализа проектирования и испытаний, и моделях, используемых для оценки повышения надежности. В ГОСТ Р 51901.6 приведено руководство по разработке программ повышения надежности и методам анализа, используемым при проектировании и в испытаниях. В настоящем стандарте приведена подробная информация о моделях, которые могут быть использованы для оценки повышения надежности на разных стадиях жизненного цикла объекта и для различных типов объектов, как восстанавливаемых, так и невосстанавливаемых.
Математические модели повышения надежности построены для оценки достигнутого повышения и проектного уровня надежности. Модели повышения надежности направлены на поддержку планирования программ повышения надежности путем оценки количества и значимости изменений в процессе проектирования и разработки или в период испытаний, необходимых для достижения целевого значения показателя надежности.
Модели повышения надежности могут быть представлены с помощью интенсивности (или параметра потока) отказов или вероятности успешной работы за установленное время (безотказности), как показано на рисунке 1.
Рисунок 1 - Планируемое увеличение средней интенсивности отказов или вероятности безотказной работы
Внутри этой общей структуры существует много моделей повышения надежности. В таблице 1 приведен обзор основных категорий. Различия между проектированием и испытаниями, тип доступных данных влияют на выбор модели. К непрерывной категории относят объекты, функционирующие во времени, например ремонтируемые объекты. К дискретной категории относят данные, которые фиксируют лишь успех/отказ объекта в испытаниях, например, для невосстанавливаемых изделий. Для оценки повышения надежности используют классические или байесовские процедуры. Первая категория использует только наблюдаемые данные, в то время как последняя использует как эмпирические данные проектирования и испытаний, так и инженерные знания, например в отношении ожидаемого количества рассматриваемых режимов отказов.
Таблица 1 - Категории моделей повышения надежности со ссылками на статьи
Тип модели | Время | ||
Непрерывное (время) | Дискретное (количество испытаний) | ||
Проектирование | Классическая | 6.1 | - |
Байесовская | 6.2 | - | |
Испытания | Классическая | 7.1 | 7.2 |
Байесовская | - | - |
Многие модели надежности разработаны для анализа данных испытаний. В настоящем стандарте представлена одна из самых популярных моделей повышения надежности, степенная модель (также известная как AMSAA или модель Кроу (Crow) [1]) в двух формах, непрерывной и дискретной. Эта модель является обобщением модели повышения надежности Дуайна (Duane) согласно Кроу [1]. Хотя существуют и байесовские варианты модели Кроу, они в стандарте не представлены. Обзор различных моделей повышения надежности, пригодных для анализа данных испытаний, можно найти у Джуэлла (Jewell) [2],[3] и Ce(Xie) [4].
_______________
Число в квадратных скобках указывает на номер литературного источника в библиографии.
Документальных отчетов о моделях повышения надежности, используемых при проектировании, очень мало. Поэтому были применены модель планирования повышения надежности, являющаяся модификацией степенной модели, для использования при проектировании и байесовский вариант модели IBM-Рознера, адаптированной для проектирования. Тем не менее они применимы только для объектов, непрерывно функционирующих во времени.
В целом выбор модели повышения надежности является компромиссом между простотой и реалистичностью. Выбор следует проводить в соответствии с вышеупомянутыми критериями, такими как стадия жизненного цикла и тип данных, а также путем анализа обоснованности предположений, лежащих в основе конкретной модели, применимой в заданных условиях. Более подробная информация об используемых предположениях для моделей, описанных в настоящем стандарте, приведена в разделах 6 и 7. Следует отметить, что модели повышения надежности не следует рассматривать как безошибочные, их не следует применять неосмотрительно, но можно использовать в качестве статистического метода для обоснования инженерных решений.