В соответствии с Киотским протоколом и Директивами Европейского парламента и Евросовета использования хладагентов с высоким потенциалом загрязнения окружающей среды и глобального потепления (фактор потенциала глобального потепления (GWP-ПГП)) следует избегать.
Наиболее перспективные альтернативные варианты для компрессора охлаждения, например, R 134а компрессора охлаждения с CO, с активным охлаждением на основе эффекта Пельтье и охлаждающих систем поглощения. Каждый из этих методов имеет свои преимущества и недостатки.
Охлаждение компрессора с помощью CO на настоящий момент более или менее эффективно, но высокая стоимость установки в связи с высоким рабочим давлением до 100 бар делает эту технологию менее интересной. Другой недостаток охлаждающих систем с помощью CO возникает из-за физических свойств охладителя и требует дополнительной мощности для охлаждения, чтобы осуществлять данный процесс. Этот факт значительно снижает степень эффективности данного метода.
Эффект Пельтье является перспективным, поскольку охлаждающий эффект в значительной степени зависит от свойств материала. Недавно проверенные материалы на основе либо пористых материалов или наноструктур свидетельствуют об улучшении степени эффективности. Методы Пельтье не нуждаются ни в какой охлаждающей жидкости, кроме движущихся частей вентиляторов.
Метод поглощения очень рациональный способ охлаждения, но он целесообразен только тогда, когда работает в комбинации с регенератором тепла, что делает поглощение системы охлаждения выполнимым в очень немногих применениях.
Для более детального рассмотрения упомянутых вариантов охлаждения - согласно приложению А.
Относительно требований к промышленности, касающихся огнеупорной плотности/охлаждения участков перегрева, доступного пространства для системы охлаждения, адаптированного к существующим инфраструктурам, шумового воздействия и, соответственно, того факта, что обычно употребляемые охладители, такие как фреон R134a, должны быть заменены, эти технические характеристики возникли для определения пространственных интерфейсов и для рекомендаций по повышению эффективности термоэлектрических систем охлаждения, основанных на эффекте Пельтье.
Рассмотрены три различные схемы расположения термоэлектрических охлаждающих систем внутри шкафов, называемые вариантами установки, варианты установки 1 и 2 целесообразны для охлаждения всего шкафа, а вариант установки 3 - для охлаждения участков перегрева внутри шкафа.
Ниже даны определения для каждого варианта установки термоэлектрических систем охлаждения внутри шкафа:
- вариант установки 1: шкаф с термоэлектрической системой охлаждения, расположенной внутри или снаружи для охлаждения всего шкафа;
- вариант установки 2: шкаф с термоэлектрической системой охлаждения, расположенной сверху, для охлаждения всего шкафа;
- вариант установки 3: встроенная термоэлектрическая система охлаждения, установленная внутри шкафа в виде блочного каркаса для охлаждения участков перегрева.
Для более точного определения размеров интерфейса и для рекомендаций по повышению эффективности охлаждения были рассмотрены только шкафы, соответствующие стандартам серий МЭК 60297 (19 дюймов) и МЭК 60917 (25 мм).