Статус документа
Статус документа

Типовые инструкции по безопасности геофизических работ в процессе бурения скважин и разработки нефтяных и газовых месторождений

1. ТИПОВАЯ ИНСТРУКЦИЯ ПО БЕЗОПАСНОСТИ РАБОТ ПРИ ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЯХ В ПРОЦЕССЕ БУРЕНИЯ СКВАЖИН

     

1.1. Задачи и комплекс геофизических исследований


Получение полной информации о разрезе скважины обеспечивается применением полного современного комплекса методов ГИС. Состав комплекса обуславливается назначением скважины (геологическими задачами, поставленными перед бурением), геолого-геофизической характеристикой изучаемого разреза, технологиями и условиями измерений.

1.1.1. Перечень геологических задач, решаемых по данным методов ГИС, широк и разнообразен. Материалы ГИС используются для: литологического и стратиграфического расчленения и корреляции разрезов пробуренных скважин; выделения в разрезе коллекторов; разделения коллекторов на продуктивные и водоносные, а продуктивных коллекторов на газо- и нефтеносные; определения положения контактов между пластовыми флюидами (ГНК, ВНК, ГВК), эффективных газо- и нефтенасыщенных толщин, коэффициентов пористости, газо- и нефтенасыщенности, проницаемости, вытеснения; определения пластовых давлений, пластовых температур, неоднородности пластов (объектов); прогноза потенциальных удельных дебитов, а также прогнозирования геологического разреза в околоскважинном и межскважинном пространстве.

1.1.2. Геофизические исследования для изучения открытого ствола скважин включают электрические и электромагнитные, акустические, радиоактивные, гидродинамические методы, отбор кернов приборами на кабеле, а также термометрию, кавернометрию, резистивометрию, наклонометрию, ядерно-магнитный каротаж и специальные технологии для выделения коллекторов: закачка изотопов, временные повторные измерения, измерения на двух промывочных жидкостях и др.

Возможно применение других методов по мере их разработки (электросканер и др.).

1.1.3. Каждый из применяемых методов и специальных технологий имеет конкретное назначение и обеспечивает получение данных об определенных геофизических характеристиках и физических свойствах разреза (см. табл.1).

Таблица 1

     
МЕТОДЫ ГИС, ПРИМЕНЯЕМЫЕ ПРИ ИЗУЧЕНИИ ОТКРЫТОГО СТВОЛА НЕФТЕГАЗОВЫХ СКВАЖИН

N п/п

Метод

Шифр

Регистрируемые условия

Назначение

Область применения; основные решаемые задачи

1

2

3

4

5

6

1. Электрические и электромагнитные методы

1.1

Электрический каротаж методом сопротивлений

ЭК

Кажущееся удельное сопротивление горных пород градиент- и потенциал зондами

Измерение характеристик электрического поля

Пресные ПЖ: определение УЭС пластов, расчет радиальной неоднородности, определение характера насыщенности пластов, коэффициентов нефтегазо-

насыщенности в комплексе с другими методами

1.2

Боковое каротажное (электрическое) зондирование

БКЗ

Кажущееся удельное сопротивление горных пород на однотипных зондовых установках различной длины

Измерение характеристик сопротивления электрического поля в радиальном направлении от ствола скважины

То же, с большей достоверностью за счет увеличения количества зондов

1.3

Каротаж потенциалов самопроизвольной поляризации

ПС

Потенциал самопроизвольной поляризации горных пород

Измерение характеристик естественного электрического поля, вызванного самопроизвольной поляризацией

Терригенный разрез: выделение коллекторов, глин и глинистых разностей, определение коэффициентов пористости в комплексе с другими методами

1.4

Микрокаротаж (электрический)

МК

Кажущееся сопротивление малыми градиент- и потенциал зондами на прижимном изоляционном башмаке

Измерение характеристик электрического поля вблизи стенки скважины

ПЖ на пресной водной основе: выделение коллекторов

1.5

Боковой каротаж (электрический)

БК

Кажущееся сопротивление зондами с экранными электродами и фокусировкой тока

Измерение характеристик электрического поля с повышенным разрешением по вертикали и повышенной глубинностью по радиусу от скважины

ПЖ на водной основе: решение задач, ЭК по п.1.1 в комплексе с БКЗ, ИК с повышенным разрешением по вертикали

1.6

Боковой микрокаротаж (электрический)

БМК

Кажущееся сопротивление фокусированными микробоковыми зондами на прижимном башмаке

Измерение характеристик электрического поля вблизи стенки скважины с очень высоким разрешением по вертикали (до 0,2 м)

ПЖ на водной основе: оценка УЭС промытой (ближней к стенке скважины) зоны, выделение коллекторов

1.7

Индукционный каротаж (электромагнитный)

ИК

Кажущаяся удельная электропроводность горных пород

Измерение характеристик электромагнитного поля, характеризующих электропроводность горных пород

Пресные ПЖ: в комплексе с БКЗ, решение задач ЭК по п.1.1

1.8

Многозондовый индукционный каротаж

ИКЗ

Кажущаяся удельная электропроводность горных пород на различных зондах

Измерение характеристик электропроводности горных пород в радиальном направлении

Пресные ПЖ: в комплексе с БК (без БКЗ) решение задач по п.1.1

1.9

Диэлектрический каротаж (электромагнитный)

ДК

Кажущаяся диэлектрическая проницаемость горных пород. Сдвиг фаз

Измерение характеристик электромагнитного поля, характеризующих диэлектрическую проницаемость

Пресные ПЖ: оценка характера насыщения и коэффициентов нефте- газо-

насыщенности; соленые ПЖ: выделение коллекторов

2. Радиоактивные методы

2.1

Гамма-каротаж

ГК

Мощность экспозиционной дозы гамма-

излучения горных пород (МЭД)

Измерение интегральных характеристик естественной радиоактивности горных пород

Выделение глин, определение глинистости

2.2

Спектрометрический гамма-каротаж

СГК

Массовое содержание естественных радиоактивных элементов (ЕРЭ) тория, урана, калия

Измерение дифференциальных энергетических характеристик естественной радиоактивности горных пород

Разделение глинистых разностей и неглинистых, характеризующихся повышенным интегральным ГК; выделение ураносодержащих пород и др.

2.3

Нейтронный каротаж (в зависимости от энергии регистрируемых нейтронов различают НК с измерением характеристик тепловых (НКт) и надтепловых нейтронов (НКнт). Нейтронный

гамма-каротаж (НГК)

НК

Интенсивность вторичного нейтронного излучения на различных зондах. Кажущаяся (водородная) пористость горных пород

Измерение характеристик вторичного нейтронного излучения в горных породах при облучении их внешним источником нейтронов

Определение коэффициентов пористости и литологии в комплексе с ГГК и АК

2.4

Плотностной гамма-гамма-каротаж

ГГКП

Интенсивность вторичного гамма-излучения на двух зондах

Измерение плотности горных пород в диапазоне 1,7-3,0 г/см по данным вторичного гамма-излучения, возникающего при их облучении внешним источником гамма-излучения

Определение плотности в комплексе с НК и АК - коэффициента пористости, литологии

2.5

Литоплотностной гамма-гамма-каротаж

ГГКЛ

Интенсивность вторичного гамма-излучения в пяти временных окнах на двух зондах, индекс фотоэлектрического поглощения Ре

Измерение характеристик вторичного гамма-излучения с регистрацией "мягкой" составляющей энергетического спектра

Определение литологии (и пористости) горных пород со сложным составом в комплексе с НК и АК

3. Акустические методы

3.1

Акустический каротаж

АК

Скорости (времена пробега t, t, t) амплитуды первых вступлений продольных и поперечных волн; их разности и отношения, фазо-

корреляционные диаграммы (ФКД), волновые картинки (ВК)

Измерения кинематических и динамических параметров возбуждающего акустического поля

Определение коэффициента пористости, выделение трещинных зон, определение физико-

механических свойств горных пород

3.2

Акустический сканер (телевизор)

САТ

Волновые картинки по отраженным волнам на высоких частотах (1-2 мГц)

Построение акустического видеоизображения стенок скважины по периметру на отраженных волнах

Выделение трещин на стенках скважин, изменений литологии, наклона пластов в комплексе с другими методами

4. Прямые методы

4.1

Гидродинамический каротаж

ГДК

Пластовые давления по стволу скважин в процессе многоразового опробования через интервал до 0,2 м, отбор единичных проб для оценки характера насыщения

Изучение фильтрационных параметров пластов непрерывно по стволу скважин в отдельных точках разреза

В исследуемых интервалах выделение проницаемых участков (пластов), оценка проницаемости, характера насыщенности по отдельным точкам в терригенном разрезе

4.2

Опробование пластов приборами на кабеле

ОПК

Образцы проб пластовых флюидов в отдельных точках и пластовые давления в процессе отбора проб

Изучение характера насыщенности пластов и их фильтрационных параметров в отдельных точках разреза скважин

То же, что п.4.1 для ГДК, но по отдельным точкам за один спуско-подъем

4.3

Отбор образцов пород (кернов) в скважинах

КО

Образцы кернов из стенок скважин

Изучение литологических характеристик и оценка фильтрационно-

емкостных свойств в отдельных точках разреза

Получение предварительных (для ГИС) данных о литологии и возможных ФЭС пластов, где отобран керн

4.4

Испытания пластов трубными испытателями

ИПТ

Измерение пластового давления, гидропроводности, продуктивности, отбор пластовых флюидов

Изучение гидродинамических параметров пласта, характера насыщения, прогнозируемого дебита

Оценка параметров пласта, характера насыщения и методов закачивания скважин (пластового давления Рпл., гидропроводности , коэффициента продуктивности)

5. Другие методы

5.1

Наклонометрия скважины

-

Измерения кажущегося удельного сопротивления электрическими прижимными микроустановками, расположенными в плоскости, перпендикулярной оси скважины по нескольким образующим стенки скважины (4-6), угла наклона и азимута искривления ствола скважины

Определение угла и азимута пластов по измерениям в единичной скважине

Данные по наклону пластов используются для корреляции разрезов скважин и уточнения моделей структур

5.2

Ядерно-магнитный каротаж

ЯМК

а) значения напряжения сигнала свободной прецессии (ССП) в фиксированные моменты времени;

б) те же значения для одного момента времени при различном времени остаточного тока и поляризации

Изучение и регистрация эффектов свободной прецессии в методе ядерно-магнитного резонанса, возникающего в горных породах и обусловленного ядрами водорода, обладающими наибольшим значением гиромагнитного отношения. Расчет ИСФ

Определение эффективной пористости пластов; оценка ВНК в разрезах с пресными водами, разделение битуминозных и нефтеносных пластов

6. Методы изучения технического состояния скважин

6.1

Инклинометрия

-

Зенитный угол и азимут искривления ствола скважины

Измерение положения ствола скважины в пространстве

Данные применяются для контроля траектории ствола скважины, учета поправок при интерпретации ГИС в наклонных скважинах

6.2

Кавернометрия

ДС

Средний диаметр скважины

Измерение среднего диаметра скважины по всему стволу

Данные используются для контроля техсостояния ствола (каверны, сальники) и для расчета цементирования колонн

6.3

Профилеметрия

-

Измерения нескольких радиусов

Измерения с целью построения профиля сечения скважины в плоскости, перпендикулярной к ее оси

Использование то же, что ДС, но детально и дополнительно выделяются опасные желоба и др.

6.4

Термометрия

-

Температура или ее градиент по стволу скважины

Измерения с целью определения температуры по глубине скважины

Применяются для изучения термоградиентов в регионах, для поправок и в интерпретации ГИС, выявлению мест поглощения контроля ПЖ

6.5

Резистометрия

-

Удельное электрическое сопротивление жидкости, заполняющей скважину

Измерения с целью изучения распределения по глубине УЭС жидкости, заполняющей скважину

Применяются для введения поправок в интерпретации ГИС, выявления поглощений и притоков, контроля состояния ПЖ

     

1.2. Типовые комплексы ГИС: основные и дополнительные

1.2.1. Комплексы геофизических исследований скважин устанавливаются проектом на строительство скважин. Для оценочных, поисковых, разведочных и опережающих разведочно-эксплуатационных скважин в открытом стволе предусмотрен единый типовой комплекс ГИС для решения геологических задач, включающий обязательные и дополнительные виды исследований, а также типовой комплекс для изучения технического состояния скважин.

1.2.2. Исследования опорных, параметрических, структурных и специальных (базовых) скважин должны выполняться по индивидуальным программам.

1.2.3. Комплексы должны быть ориентированы на применение современной цифровой и компьютизированной каротажной техники и комбинированных модульных сборок скважинных приборов.

1.2.4. Типовой комплекс для решения геологических задач в бурящихся нефтегазовых скважинах состоит из:

общих исследований по всему стволу скважин;

детальных исследований в перспективных и продуктивных интервалах;

дополнительных исследований в тех же интервалах.

Сведения о комплексе приведены в табл.2.

Таблица 2

     
ТИПОВЫЕ КОМПЛЕКСЫ МЕТОДОВ ГИС ДЛЯ РЕШЕНИЯ ГЕОЛОГИЧЕСКИХ ЗАДАЧ В ОЦЕНОЧНЫХ, ПОИСКОВЫХ, РАЗВЕДОЧНЫХ И РАЗВЕДОЧНО-ЭКСПЛУАТАЦИОННЫХ СКВАЖИНАХ

N
п/п

Вид работ

Методы ГИС

ПС

КС

БК

ГК

ННК

НТК

ГГК-П

ДС

терм.

ИК

ДК

БКЗ

БМК

МК

СГК

ГГК-Л

ИНК

ГДК,
ИПТ

ОПК,
ИПТ

ЯМК

КО

Нак-
лоно-
мер

Закачка
изото-
пов

Пов-
тор-
ные
изме-
рения

Изме-
рения
на
2-х
ПЖ

1.

Общие исследо-

вания, М 1:500

-

-

-

+

+

+

+

+

+

+

+

2.

Детальные исследо-

вания, М 1:200

-

-

-

+

*

*

+

+

+

-

-

-

*

*

+

2.1.

Переменная часть: при наличии в разрезе трещинных, глинистых и битуминоз-

ных коллек-

торов

+

+

+

+

2.2.

При наклоне пластов к оси скважины более 10 мин

+

2.3.

При низком выходе керна

+

2.4.

При неизвестном положении одного или нескольких межфлюид-

ных контактов

+

+

2.5.

При неодноз-

начной геологи-

ческой интерпре-

тации

+

+

+

3.

Дополни-

тельные исследо-

вания для изучения сложных разрезов, М 1:200

+

+

+

+

+

+