10. Гидравлическая система первого контура ЯЭУ состоит из каналов активной зоны, насосов, трубопроводов, коллекторов, каналов парогенератора и предназначена для прокачки теплоносителя и передачи тепла от твэлов реактора ко второму жидкометаллическому контуру и далее к воде и водяному пару в парогенераторах (при трехконтурной схеме) или сразу к воде и водяному пару (при двухконтурной схеме). Дополнительными устройствами, входящими в гидравлическую систему, являются теплообменные аппараты, арматура, дроссельные и сепарирующие устройства. Замкнутая гидравлическая система подводящих и отводящих трубопроводов, распределительных устройств внутри корпуса реактора и каналов (кассет) с тепловыделяющими элементами называется циркуляционным контуром.
11. Большинство гидродинамических расчетов в ядерной энергетике связано с течениями в каналах. Главными задачами при расчете таких течений являются определение гидравлических сопротивлений каналов различной геометрии и местных сопротивлений, расчет распределения по каналам расходов, скоростей и касательных напряжений. Основными целями расчета являются: определение потерь давления в каналах и на элементах контура, затрат мощности на прокачку теплоносителя, а также и цели, связанные, в частности, с расчетом эрозии, коррозии, массопереноса.
12. При проведении гидравлических расчетов используются следующие величины, характеризующие поток в каналах: геометрические параметры канала (например площадь поперечного сечения, гидравлический диаметр, длина, абсолютная шероховатость), скорость, плотность и вязкость среды. Средняя плотность среды определяется по средней температуре среды в канале на данном участке.
13. Все теплоносители, используемые в атомной энергетике, включая жидкие металлы, являются ньютоновскими жидкостями и, таким образом, подчиняются общим закономерностям в области гидродинамики.
14. Режимы однофазного течения.
1) Режимы течения в каналах с безотрывным обтеканием.
Ламинарный или слоистый режим течения характеризуется отсутствием пульсаций гидродинамических величин. Критическое число Рейнольдса , (), при достижении которого происходит потеря устойчивости и разрушение ламинарного режима течения в трубах круглого поперечного сечения, обычно принимается равным 2300. За счет устранений возмущений на входе в канал можно существенно затянуть существование ламинарного режима течения до =(57)·10. Наличие шероховатости на стенках трубы уменьшает значение критического числа Рейнольдса. Неизотермичность потока также влияет на критическое число Рейнольдса. При совпадении направлений свободного и вынужденного движений у стенки критическое число Рейнольдса возрастает в зависимости от величины числа Релея () (таблица N 1).
Таблица N 1
Зависимость критического числа Рейнольдса от числа Релея при совпадении направлений свободного и вынужденного движений в круглой гладкой трубе
·10 | 0 | 1,6 | 4,7 | 11,6 | 15,8 |
2300 | 3500 | 5200 | 6200 | 7100 |
При противоположном направлении естественной конвекции и вынужденного движения у стенки критическое число Рейнольдса уменьшается, снижаясь при =10 до значения =10.
Критическое число Рейнольдса для каналов некруглого поперечного сечения имеет примерно такое же значение, как и для круглой трубы (таблица N 2). Для каналов с узкими угловыми областями критическое число Рейнольдса является условной величиной, поскольку турбулентность сначала возникает в широкой части канала, а затем распространяется на узкую.
Таблица N 2
Критическое число Рейнольдса для каналов различной геометрии при продольном обтекании
Тип канала | |
Кольцевой | 20002800 |
Прямоугольный | 20002300 |
Треугольный с >45° | 2000 |
Сборки стержней различной упаковки | 2000 |
В змеевиках и других криволинейных каналах, где возникают значительные центробежные силы, граница перехода к турбулентному режиму течения сдвигается в область более высоких значений чисел Рейнольдса.
Критическое число Рейнольдса (граница перехода ламинарного течения в турбулентное) в змеевиках рассчитывается по формуле:
, (1)
где - диаметр змеевиков, м; - внутренний диаметр трубы змеевика, м.
Критическое число Рейнольдса в спирально-навитых (витых) трубах диаметром , меньшим их внутреннего диаметра (рис.1), и в локально-навитых трубах, у которых навитые участки чередуются с прямолинейными длиной L, рассчитывается по формуле: