Процедуры определения функции площади наконечника
B.1 Общая часть
Нижеследующие методы определения функции площади наконечника являются достоверными. Каждый из этих методов дает в результате ту же самую функцию площади наконечника в пределах допустимых отклонений.
B.2 Прямой метод измерения
То, какой метод прямого измерения является наиболее подходящим, зависит от предполагаемого использования наконечника. Для определения с высоким разрешением характеристик формы вершины наконечника (1 мкм) идеально подходит атомно-силовой микроскоп (АСМ). Необходимо учесть в результатах измерений АСМ различные источники погрешности и неопределенности измерений [9] и [13]. Электронный или оптический микроскоп может быть более пригоден при больших глубинах индентирования.
B.3 Косвенные методы измерения
B.3.1 Эти методы основываются на индентировании в материал с известными свойствами. Поэтому необходимо, чтобы были выполнена поэлементная поверка (калибровка) прибора и определена податливость твердомера, как описано в 5.5, или чтобы использовалась какая-либо итерационная процедура, основанная на определении модуля упругости при индентировании [8]. После того как в данные нагрузка/перемещение внесена поправка на податливость твердомера (а также на температурный и другой систематический дрейф), могут быть применены три следующих метода.
Функция площади наконечника обычно выражается как математическая функция зависимости площади поперечного сечения () от глубины контакта () или площади поверхности наконечника () от глубины внедрения в образец (h), отсчитываемой от невозмущенного уровня поверхности до вершины наконечника. При глубинах индентирования, при которых функцию площади невозможно выразить относительно простой (кубической или полиномной) функцией, ее можно определить графически или с помощью справочной таблицы. В качестве альтернативы можно использовать другую математическую функцию или принятую сплайновую функцию, чтобы описать различные части наконечника.
B.3.2 В первом методе используются две эталонные меры твердости из разных материалов, про которые экспериментально подтверждено, что твердость этих мер не зависит от глубины внедрения. На этих мерах можно получить функцию (h) или (h) для каждой конкретной глубины индентирования h, измеренной при испытательной нагрузке F. Как правило, этот метод не подходит для малых глубин индентирования, например менее 0,2 мкм.
B.3.3 Во втором методе используется эталонная мера твердости из материала с известным модулем Юнга и коэффициентом Пуассона или известным модулем продольной деформации. По кривой снятия испытательной нагрузки можно определить контактную податливость твердомера. Контактную податливость можно соотнести с модулем упругости при индентировании испытуемого образца по формуле (B.1):
; (В.1)
, (В.2)
где - контактная податливость, определяемая как производная от зависимости глубины внедрения от приложенной нагрузки (dh/dF), при максимальной приложенной нагрузке (величина, обратная контактной жесткости);
- приведенный модуль упругости;
- площадь поперечного сечения контактной поверхности, значение функции площади наконечника при глубине контакта, определяемой в соответствии с приложением А ГОСТ Р 8.748-2011;
- коэффициент Пуассона материала испытуемого образца;
- коэффициент Пуассона материала наконечника (для алмаза он равен 0,07);
- модуль Юнга материала образца;
- модуль Юнга материала наконечника (для алмаза он равен 1,14·10 Н/мм).
Так, если в качестве испытуемого образца используется материал с известным модулем упругости при индентировании (или модулем Юнга), то из вышеприведенных соотношений можно определить для каждой конкретной глубины контакта и (определение глубины контакта по ГОСТ Р 8.748). Использование итерационного метода и набора эталонных мер твердости делает возможным одновременное измерение функции площади поперечного сечения наконечника и поправки на податливость твердомера, см. [8].
Диапазон нагрузок должен быть выбран таким образом, чтобы он полностью охватывал диапазон возможных глубин индентирования. Для индентирований с контролируемой нагрузкой требуется провести несколько предварительных экспериментов, чтобы установить диапазон нагрузок, необходимый для того, чтобы вызвать соответствующие значения перемещения наконечника в мере твердости. Должен быть выбран ряд минимум из десяти различных нагрузок для охвата интересующего диапазона и должно быть сделано в общей сложности не менее 100 индентирования в меру твердости. Рекомендуется использовать набор значений глубины, выполняя по три индентирования при каждой глубине и используя среднее значение для определения . Таким образом, можно получить график зависимости от глубины контакта при индентировании . Допустимо также использовать метод частичной разгрузки для получения результатов измерений в одной точке при разных глубинах.
Одним из преимуществ использования модуля Юнга как опорного значения является то, что упругий отклик материала испытуемого образца не чувствителен к нагартовке или термическому воздействию, или к величине ползучести, которая имела место при индентировании. Требуется только, чтобы скорость ползучести при разгрузке была пренебрежимо малой по сравнению со скоростью разгрузки в эксперименте по индентированию. Другое преимущество - то, что модуль Юнга можно определить независимо другими методами помимо индентирования.
Для оценки отклика различных материалов рекомендуется использовать переменную эпсилон (равную 0,72-0,8) и поправку на радиальное перемещение. Метод оценки поправки на радиальное перемещение приводится в ГОСТ Р 8.748. Поправка на радиальное перемещение очень мала для большинства металлов (<0,5%), но достигает до 5% для высокоупругих материалов, таких как плавленый кварц.
В.3.4 Для реализации третьего метода необходимо использовать поверенные (откалиброванные) эталонные меры твердости с известными значениями твердости (HM или H в зависимости от того, по какой шкале будут проводиться измерения на твердомере). Выбираются три меры из трех разных диапазонов (0,09-0,2) ГПа, (1-10) ГПа, (10-30) ГПа, поверенных (откалиброванных) при одной и той же испытательной нагрузке. На каждой из мер твердости делается по 20 индентирований с той же нагрузкой, при которой меры были поверены (откалиброваны). Функция площади наконечника рассчитывается таким образом, чтобы выполнялось условие из 5.2.6 для каждой меры твердости.