Статус документа
Статус документа

ГОСТ Р 8.887-2015 Государственная система обеспечения единства измерений (ГСИ). Потенциал электрокинетический (дзета-потенциал) частиц в коллоидных системах. Оптические методы измерения

     4 Сущность метода измерений

4.1 Вводная часть

Дзета-потенциал - основной показатель стабильности коллоидных систем в жидких средах. Частицы в коллоидной системе участвуют в броуновском (хаотическом) движении, а приложение электрического поля вызывает их направленный дрейф. На поверхности частиц (на границе раздела "частица - жидкость") возникает двойной электрический слой. На поверхности частицы закрепляется слой ионов определенного знака, равномерно распределенный по поверхности и создающий на ней поверхностный заряд (потенциалопределяющие ионы). К этому слою из жидкой среды притягиваются ионы противоположного знака (противоионы).

Слой противоионов состоит из плотного адсорбционного слоя, прочно связанного с частицей и движущегося вместе с ней, и диффузного слоя, который связан менее прочно и при движении частицы отрывается от нее. Граница между адсорбционным и диффузным слоями называется поверхностью скольжения.

Электрический потенциал, возникающий на поверхности скольжения за счет взаимодействия частицы и дисперсной среды, называется электрокинетическим, или дзета-потенциалом (-потенциал). Электрокинетический потенциал - показатель стабильности коллоидного раствора. Чем больше дзета-потенциал, тем устойчивее коллоидная система. Значение дзета-потенциала, равное ±30 мВ, - характерное значение для условного разделения низкозаряженных поверхностей и высокозаряженных поверхностей.

Для измерения дзета-потенциала коллоидных частиц в жидких средах оптическими методами используют явление электрофотреза, то есть направленного движения заряженных частиц, взвешенных в жидкости, под действием электрического поля. При этом существуют два различных подхода [1]:

- метод микроэлектрофореза, заключающийся в наблюдении за электрофотретическим движением частиц через микроскоп;

- метод электрофоретического рассеивания света, основанный на измерении допплеровских сдвигов частоты или фазы излучения, рассеянного исследуемыми коллоидными частицами при их движении во внешнем электрическом поле.

В обоих методах взвесь частиц помещают в измерительную ячейку, в которой имеется пара электродов (см. рисунок 1) [1]. Эти электроды могут быть расположены либо на концах цилиндрического или прямоугольного капилляра, либо быть выполненными в виде специальной вставки, в которой они находятся на фиксированном расстоянии друг от друга и погружаются в стандартную кювету или другой сосуд.

     
а - область измерения скорости частиц; d - расстояние между электродами

Рисунок 1 - Принципиальная схема электрофореза


На электроды подают известное постоянное напряжение. В результате электрофореза частицы, находящиеся в коллоидной системе и несущие отрицательный заряд, притягиваются к электродам противоположного знака, и наоборот. Кроме того, если стенки капилляра заряжены, имеет место электроосмос, то есть течение жидкости вдоль стенок капилляра. Направление и скорость частиц зависят от знака и значения их заряда. Результирующая скорость частиц в системе отсчета, связанной с измерительной ячейкой, является суммой скоростей электрофоретического движения частиц и электроосмотического течения жидкости. При этом время, необходимое частицам для достижения равновесной скорости электрофоретического движения после приложения электрического поля, значительно меньше времени, необходимого жидкости для установления равновесного электроосмотического потока. Это различие используют в некоторых реализациях метода измерений.

Измеряют как скорость движения частиц в системе отсчета, связанной с ячейкой, так и направление этого движения частиц. Поскольку напряжение, приложенное к электродам, и расстояние между ними известны на основании установленных теорий, может быть определена электрофоретическая подвижность, по которой затем вычисляют дзета-потенциал.

4.2 Сущность метода микроэлектрофореза

Сущность данного метода измерения дзета-потенциала коллоидных систем заключается в измерении скорости движения частиц, движущихся вдоль окулярной сетки микроскопа, с последующим расчетом электрофоретической подвижности частиц и дзета-потенциала.

На измерительную ячейку с коллоидным раствором подают лазерное излучение, а движение частиц вдоль окулярной сетки микроскопа обеспечивают за счет приложенного к ячейке напряжения. Излучение, попавшее на ячейку, рассеивается частицами, находящимися в коллоидной системе. В результате рассеивания возможно наблюдать освещенные частицы с помощью микроскопа на светлом или на темном поле, также возможно наблюдение на обоих полях, в зависимости от конструкции анализатора дзета-потенциала. При наблюдении в светлом поле достаточный контраст может быть обеспечен только для частиц размерами более 200 нм, в темном поле получение удовлетворительного контраста возможно для частиц размерами более 20 нм. Регистрация траектории движения частиц и расчет скорости их движения осуществляют с помощью высокочувствительного регистрационного устройства (видео- или фотокамеры) с использованием специального программного обеспечения в автоматическом режиме.

Принципиальная схема такого анализатора дзета-потенциала представлена на рисунке 2 [1].

     

1 - источник излучения (лазер); 2 - измерительная ячейка; 3 - объектив микроскопа; 4 - высокочувствительная видео- или фотокамера

Рисунок 2 - Схема анализатора дзета-потенциала, основанная на микроскопическом методе


Данным методом возможно измерять значение дзета-потенциала коллоидной системы для частиц диаметром от 10 нм до 50 мкм.

4.3 Сущность метода электрофоретического рассеяния света

Электрофоретическое рассеяние света (ЭФРС) - это косвенный метод измерения электрофоретической подвижности частиц по допплеровскому сдвигу частоты или фазы рассеянного ими излучения. При измерениях методом ЭФРС на частицы, взвешенные в жидкости и находящиеся в электрическом поле, направляют лазерное излучение. Под действием электрического поля заряженные частицы движутся либо к катоду, либо к аноду, в зависимости от знака своего электрического заряда. Вследствие этого движения частота и фаза излучения, рассеянного частицами, претерпевают сдвиг, обусловленный эффектом Доплера. По распределению частотных сдвигов может быть вычислено распределение электрофоретических подвижностей частиц. Для предотвращения нежелательных эффектов - электролитического отложения вещества на электродах и скопления частиц в одной стороне кюветы - полярность приложенного электрического поля периодически меняют, то есть реализуют импульсно-периодический режим. Форма импульсов может быть прямоугольной или синусоидальной, а частота их следования и амплитуда зависят от типа ячейки и способа обработки сигнала [1].

Измерения методом ЭФРС целесообразно проводить при малых углах рассеяния (от 12° до 30°), чтобы минимизировать спектральное уширение лазерных линий вследствие эффекта Доплера. Наиболее отработанными являются схемы с опорным пучком, описанные ниже.