Статус документа
Статус документа

ГОСТ Р МЭК 62502-2014 Менеджмент риска. Анализ дерева событий

Библиография

[1]

American Institute of Chemical Engineers, Layer of Protection Analysis - Simplified process risk assessment, New York, USA, October 2001

[2]

ANDREWS, J.D., DUNNETT, S.J. Event Tree Analysis using Binary Decision Diagrams, IEEE Trans. Reliability, Vol 49, pp 230-238, 2000

[3]

ASME Standard for Probabilistic Risk Assessment for Nuclear Power Plant Applications, ASME RA-S-2002, 2002, Amended by addenda ASME RA-Sa-2003, ASME RA-Sb2005, and ASME RA-Sc-2007

[4]

BRABAND, J., LENNARTZ, K. A Systematic Process for the Definition of Safety Targets for Railway Signalling Applications, Signal+Draht, 9/99

[5]

DOWELL, III, A.M., HENDERSHOT, D.C. Simplified Risk Analysis - Layer of Protection Analysis (LOPA), American Institute of Chemical Engineers, Indianapolis, 2002

[6]

Expert Group on Probabilistic Safety Analysis for Nuclear Power Plants: "Methods for Probabilistic Safety Analysis for Nuclear Power Plants, Status: August 2005", BfS-SCHR-37/05, Salzgitter, October 2005 (In German)

[7]

FULLWOOD, R.; HALL, R. Probabilistic Risk Assessment in the Nuclear Power Industry, NewYork, 1988

[8]

GOLDBERG, B.E., EVERHART, K│ STEVENS, R., BABBITT III, N., CLEMENS,P│ STOUT, L. System Engineering "Toolbox" for Design-Oriented Engineers, NASA Reference Publication 1358,1994

[9]

Guidelines on Modeling Common Cause Failures in Probabilistic Risk Assessment, NUREG/CR-5485, NRC 1998

[10]

HENLEY, E.J., KUMAMOTO, H. Reliability Engineering and Risk Assessment, 1981

[11]

HOFER, E., KLOOS, M., KRZYKACZ-HAUSMANN, B., PESCHKE, J., SONNENKALB, M. Dynamic Event Trees for Probabilistic Safety Analysis, Gesellschaft Anlagen-und Reaktorsicherheit (GRS), Proceedings EUROSAFE, Berlin 4-5 November 2002

[12]

ISO/IEC 31010 Risk management - Risk assessment guidelines

[13]

IEC 60300-3-1:2003

Dependability Management - Part 3-1: Application guide-Analysis techniques for dependability - Guide on methodology

[14]

IEC 60300-3-9:1995

Dependability management-Part 3: Application guide - Section 9: Risk analysis of technological systems

[15]

IEC 60812:2006

Analysis techniques for system reliability - Procedure for failure mode and effects analysis (FMEA)

[16]

IEC 61078:2006 Analysis techniques for dependability - Reliability block diagram and boolean methods

[17]

IEC 61165:2006 Application of Markov techniques

[18]

IEC 61508 (all parts) Functional safety of electrical/electronic/programmable electronic safety-related systems

[19]

IEC 61511-3:2003

Functional safety - Safety instrumented systems for the process industry sector - Part 3: Guidance for the determination of the required safety integrity levels

[20]

IEC 61703:2001

Mathematical expressions for reliability, availability, maintainability and maintenance support terms

[21]

IEC 62425:2007

Railway applications - Communication, signalling and processing systems - Safety related electronic systems for signaling

[22]

IEC 62429:2007 Reliability growth - Stress testing for early failures in unique complex systems

[23]

IEC 62508:2010 Guidance on human aspects of dependability

[24]

IEC 62551 Analysis techniques for dependability- Petri net techniques

[25]

ISO 3534-1:2006 Statistics - Vocabulary and symbols - Part 1: General statistical terms and terms used in probability

[26]

KLOOS, M., PESCHKE, J., MCDET: A Probabilistic Dynamics Method Combining Monte Carlo Simulation with the Discrete Dynamic Event Tree Approach, Nuclear Science and Engineering: 153,137-156, 2006

[27]

LEVESON, N.G. SAFEWARE: System Safety and Computers, Addison-Wesley Publishing Company, 1995

[28]

McCORMICK, N.J. Reliability and Risk Analysis - Methods and Nuclear Power Applications, Boston, 1981

[29]

Nuclear Regulatory Commission, PRA Procedures Guide, A Guide to the Performance of Probabilistic Risk Assessments for Nuclear Power Plants, Final Report, NUREG/CR-2300 Vol. 1, January 1983

[30]

NIELSEN, D.S. The Cause/Consequence Diagram Method as a Basis for Quantitative Accident Analysis, Danish Atomic Energy Commission, RISO-M-1374, May 1971

[31]

Nuclear Regulatory Commission, Reactor Safety Study: An Assessment of Accident Risks in US Commercial Nuclear Power Plants, Rep. WASH-1400-MR(NUREG-75/014), Washington, DC, 1975

[32]

PAPAZOGLOU, I. A. Mathematical foundations of event trees, Reliability Engineering and System Safety 61 (2008) 169-183, Northern Island, 2008

[33]

Railtrack, Engineering Safety Management System, Issue 2.0, "Yellow Book", 1997

[34]

RAUSAND, M., HOYLAND, A. System Reliability Theory - Models, Statistical Methods and Applications, Hoboken, New Jersey, 2004

[35]

SIU, N. Risk Assessment for Dynamic Systems: An Overview, Reliability Engineering and System Safety 43,1994, p. 43-73

[36]

SMITH, D.J. Reliability, Maintainability and Risk, Oxford, 2001

[37]

Special subject: Common cause failure analysis, Kerntechnik Vol 71, No 1-2, Carl Hanser-Verlag, February 2006, pp 8-62

[38]

VILLEMEUR, A. Reliability, Availability, Maintainability and Safety Assessment. Volume 1. Methods and Techniques, Chichester, Wiley, 1992

[39]

XU, H.; DUGAN, J.B. Combining Dynamic Fault Trees and Event Trees for Probabilistic Risk Assessment, University of Virginia, January 2004

[40]

ZIO, E. An Introduction to the Basics of Reliability and Risk Analysis, Series in Quality, Reliability and Engineering Statistics, Vol. 13, 2007


УДК 62-192:658.562:006.354

ОКС 21.020

Т59

Ключевые слова: событие, вероятность события, частота события, успех события, отказ события, дерево событий, узел, инициирующее событие, последовательность событий, главное событие, ветвь




Электронный текст документа

подготовлен АО "Кодекс" и сверен по:

официальное издание

М.: Стандартинформ, 2015