Статус документа
Статус документа

ГОСТ ISO 16063-1-2013 Вибрация. Методы калибровки датчиков вибрации и удара. Часть 1. Основные положения

     4 Измеряемые характеристики

4.1 Общие положения

Основной целью калибровки преобразователя является определение его коэффициента преобразования в рабочем диапазоне частот и амплитуд в направлении, соответствующем назначению преобразователя. Также может представлять интерес информация о коэффициенте преобразования для движений по остальным пяти степеням свободы. Например, для преобразователей, измеряющих поступательную вибрацию, может потребоваться знание коэффициента преобразования для вибрации в поперечном направлении и для угловой вибрации. Другими важными характеристиками являются демпфирование, сдвиг фаз, нелинейность (изменение отклика при изменении амплитуды входного воздействия), чувствительность к изменениям температуры, давления и к другим внешним условиям, например, к движению соединительного кабеля.

4.2 Прямой отклик

4.2.1 Амплитудно-частотная и фазочастотная характеристики

Коэффициент преобразования определяют измерением параметров движения, создаваемого вибростендом, и выходного сигнала преобразователя. При этом преобразователь устанавливают таким образом, чтобы его основная ось чувствительности была параллельна направлению движения, создаваемого вибростендом. Для калибровки может быть использовано возбуждение в виде переходного процесса при условии, что его частотные составляющие находятся в пределах рабочего диапазона преобразователя.

Для выявления резонансов преобразователя необходимо наблюдать за его выходным сигналом в процессе медленного непрерывного изменения частоты вибрации, возбуждаемой вибростендом, во всем частотном диапазоне преобразователя.

Обычно интерес в первую очередь представляет зависимость от частоты модуля коэффициента преобразования (амплитудно-частотная характеристика). Однако при измерениях вибрации вблизи границ частотного диапазона преобразователя, а также при измерении с целью оценки параметров вибрации некоторых видов необходимо знать фазочастотную характеристику преобразователя. Фазочастотную характеристику определяют, измеряя сдвиг фаз между входным и выходным сигналами преобразователя в интересующем диапазоне частот.

4.2.2 Нелинейность

Отклонения от прямо пропорциональной зависимости между входным и выходным сигналами преобразователя, искажающие форму сигнала, определяют, измеряя амплитуды выходного сигнала при изменении входного сигнала в рабочем диапазоне амплитуд от минимального до максимального значения. При использовании вибростенда, возбуждающего гармонические колебания, измерения проводят на нескольких частотах.

Возможны разные виды нелинейности. Коэффициент преобразования может изменяться постепенно с увеличением амплитуды, может иметь постоянное смещение, ведущее к смещению нуля после воздействия на преобразователь вибрации или удара, а также может иметь область насыщения, резко обрывающую диапазон измерений вибрации.

Нелинейность может быть охарактеризована значением коэффициента гармоник, а также посредством сравнения резонансной кривой, фазового сдвига и декремента колебаний с аналогичными характеристиками идеального линейного преобразователя. Допустимые отклонения от линейности зависят от вида проводимых измерений. Эти отклонения определяют вблизи верхнего предела динамического диапазона преобразователя.

4.3 Влияющие факторы
     


    4.3.1 Зависимость от температуры

У многих преобразователей коэффициент преобразования, коэффициент демпфирования и резонансная частота находятся в функциональной зависимости от температуры. При определении температурной зависимости чаще всего используют метод сравнения.

Испытуемый преобразователь устанавливают в термокамере соосно с эталонным, который защищают от изменений температуры, располагая его вне термокамеры или другим способом. Изменение коэффициента преобразования эталонного преобразователя не должно превышать 2% в течение всей процедуры калибровки. Испытания проводят на частотах, где коэффициент поперечных составляющих вибрации, возбуждаемой вибростендом, не превышает 25%. Конструкция вибростенда и устройства крепления преобразователя на частотах калибровки должны обеспечивать незначительное относительное движение эталонного и калибруемого преобразователей.

Альтернативным является метод, при котором эталонный и калибруемый преобразователь устанавливают внутри термокамеры. Этот метод ограничен диапазоном температур, в котором известны температурные свойства эталонного преобразователя.

Для преобразователей с откликом на нулевой частоте значения этого отклика измеряют при максимальной и минимальной температурах.

Преобразователи с внутренним демпфированием свыше 10% калибруют, как минимум, на четырех частотах при одном значении амплитуды вибрации и при пяти значениях температуры, включая комнатную. Такие же условия испытаний применяют для преобразователей (например, электродинамических), конструкция которых включает в себя катушки индуктивности. Частоты возбуждения выбирают в пределах рабочего диапазона частот преобразователя.

Внутренние емкость и сопротивление пьезоэлектрических преобразователей необходимо измерять после стабилизации при максимальной температуре калибровки.

Если внутреннее сопротивление преобразователя при максимальной температуре калибровки окажется настолько малым, что будет влиять на низкочастотную область характеристики применяемого усилителя, то калибровку в низкочастотной области необходимо проводить при данной температуре. Чтобы определить частотную характеристику во всем рабочем диапазоне частот преобразователя, испытания проводят на нескольких частотах. Преобразователь калибруют вместе с усилителем, который будет использован с данным преобразователем.

Примечание - Высокая температура может повлиять как на частотную характеристику в низкочастотной области, так и на помехоустойчивость и стабильность системы "преобразователь - усилитель". Температурное отклонение отклика рассчитывают как изменение коэффициента преобразования при температуре испытания по отношению к коэффициенту преобразования при комнатной температуре (20°С), измеренным на частоте в пределах диапазона частот, в котором коэффициент преобразования постоянен. Это отклонение выражают в процентах коэффициента преобразования при комнатной температуре. Как правило, желательно выбирать преобразователи, которые имеют температурное отклонение отклика, не превышающее 15% в пределах установленного диапазона температур.

4.3.2 Чувствительность пьезоэлектрических преобразователей к перепаду температур

Пьезоэлектрические преобразователи под действием перепада температур генерируют пироэлектрический сигнал. Это особенно характерно для преобразователей, в конструкции которых использована ферроэлектрическая керамика. Значения пироэлектрических сигналов на выходе зависят от материала кристалла и конструкции преобразователя. Обычно доминирующая частота пироэлектрического выходного сигнала значительно меньше 1 Гц. Кроме того, пироэлектрические сигналы преобразователя отфильтровываются большинством усилителей, имеющих спад характеристики в низкочастотной области.

Таким образом, пироэлектрический выходной сигнал зависит от скорости изменения температуры и от характеристик усилителя и преобразователя, используемых совместно.

Пироэлектрические испытания проводят, используя тип усилителя, с которым обычно применяют данный преобразователь. Преобразователь обычным способом устанавливают на алюминиевый брусок, после чего их быстро погружают в ванну с ледяной водой или другой подходящей жидкостью, температура которой отличается от нормальной приблизительно на 20°С. В протоколе испытаний должно быть указано, какую жидкость использовали при испытании. Масса бруска должна быть приблизительно в 10 раз больше массы преобразователя. Перед испытанием необходимо убедиться в том, что жидкость не будет проникать в преобразователь и не вызовет понижение сопротивления электрической изоляции при соприкосновении с разъемом преобразователя. Измеряют максимальное значение выходного сигнала усилителя и время от начала погружения до момента достижения этого значения. Если выходной сигнал в течение первых двух секунд изменит полярность и достигнет максимума противоположной полярности, то значение и время достижения этого максимума тоже должны быть зарегистрированы.

Для преобразователей ускорения чувствительность к перепаду температур выражают в метрах на секунду в квадрате на градус Цельсия (м/с/°С) и определяют как частное от деления максимального выходного сигнала преобразователя на произведение разности между температурой жидкости в ванне и нормальной температурой на коэффициент преобразования акселерометра.

В случаях применения усилителей с ненулевыми значениями частотной характеристики в низкочастотной области пироэлектрические испытания следует проводить с использованием таких усилителей. Если в реальных условиях применения преобразователя скорость изменения температуры будет существенно отличаться от вышеописанной, то условия испытаний могут быть изменены, чтобы максимально приблизить их к реальным условиям.

4.3.3 Относительный коэффициент поперечного преобразования