Статус документа
Статус документа

ГОСТ Р 54418.24-2013 (МЭК 61400-24:2010) Возобновляемая энергетика. Ветроэнергетика. Установки ветроэнергетические. Часть 24. Молниезащита


Библиография

[1]

МЭК 62305-3:2006 Часть 3. Физическое повреждение конструкций и опасность для человека

[2]

МЭК/ТУ 61400-23 Генераторные системы ветроэнергетических установок. Часть 23. Испытание конструкции лопастей ротора

[3]

EN 50164-1 Lightning Protection Components (LPC). Part 1. Requirements for connection components

[4]

МЭК 60060-1 Методы испытаний высоким напряжением. Часть 1. Общие определения и требования к испытаниям

[5]

МЭК 60243-3 Электрическая прочность твердых изоляционных материалов. Методы испытаний. Часть 3. Дополнительные требования для импульсных испытаний с длительностью импульса 1,2/50 мкс

[6]

МЭК 60587 Электроизоляционные материалы, используемые для жестких условий окружающей среды. Методы испытаний для оценки сопротивления действию блуждающего тока и эрозионной стойкости

[7]

МЭК 62305-4:2006 Защита от молнии. Часть 4. Электрические и электронные системы внутри конструкций

[8]

МЭК/ТТ 61000-5-2 Электромагнитная совместимость (ЭМС). Часть 5. Руководство по установке и уменьшению воздействия на окружающую среду. Раздел 2. Заземление и кабельная сеть

[9]

МЭК 60364-5-53:2001 Электрические установки зданий. Часть 5-53. Выбор и установка электрооборудования. Изоляция, коммутационная аппаратура и механизмы управления

[10]

МЭК 61643-22 Низковольтные устройства защиты от перенапряжений. Часть 22. Устройства защиты от перенапряжений, подсоединенные к системам связи и сигнализационным сетям. Принципы отбора и использования

[11]

МЭК 60071 (все части) Выбор изоляции

[12]

МЭК 60204-11 Электрооборудование промышленных машин. Безопасность. Часть 11. Требования к высоковольтному оборудованию, работающему при напряжениях свыше 1000 В переменного тока или 1500 В постоянного тока и не выше 36 кВ

[13]

МЭК 60071-2:1996 Выбор изоляции. Часть 2. Руководство по применению

[14]

МЭК 60479-4 Влияние электрического тока на человека и скот. Часть 4. Влияние ударов молнии на человека и скот

[15]

МЭК 60587 Электроизоляционные материалы, используемые для жестких условий окружающей среды. Методы испытаний для оценки сопротивления действию блуждающего тока и эрозионной стойкости

[16]

РАКОВ В.А., УМАН М.А. Физика и воздействия молнии. Издательство Кембриджского университета, 2003, ISBN 0 521 58327

[17]

БЕРГЕР К., АНДЕРСОН Р.Б., И КРОНИНГЕР X. Параметры вспышек молнии. Electra, том 80, стр.23-37, 1975 г.

[18]

АНДЕРСОН Р.Б. и ЭРИКССОН А.ДЖ. Параметры молнии для технического применения. Electra, том 69, стр.65-103, 1980 г.

[19]

ВАДА А., ЙОКОЯМА С., НУМАТА Т., ИСИБАСИ Й., ХИРОСЕ Т. Повреждения молнией лопастей ветроэнергетических установок в зимнее время в Японии - наблюдение за молнией на ветровой ферме Никахо-Коген, материалы 27 международной конференции по молниезащите, г.Авиньон, Франция стр.947-952, 2004 г.

[20]

ЦУТИЯ К., ЯМАДА С., и МАЦУДЗАКА Т. Изучение повреждения молнией WECs (преобразователь ветровой энергии) искусственными ударами молнии. Энергия ветра: Технология и внедрение, стр.737-741. Amsterdam EWEC '91. Издательство Elsevier Science Publ., 1991.

[21]

ФИШЕР Ф.А., ПЛАМЕР Дж.А. и Перала Р.А. Молниезащита самолета. Второе издание Издательство Lightning Technologies Inc., г.Питсфилд, шт.Миннесота, США, 2004 г.

[22]

ГЕВЕР Х.В. Молниезащита композиционных лопастей ротора. Американская ассоциация ветровой энергии. Национальная конференция Питтсбург, шт.Пенсильвания, США, 8-11 июня 1980 г.

[23]

ДАЛЕН ДЖ. Молниезащита больших лопастей ротора, проектирование и опыт. Международное энергетическое агентство (IEA), ветряные исследования и разработки, приложение XI, 26-я встреча экспертов. Молниезащита генераторных систем ветроэнергетических установок и проблемы электромагнитной совместимости в объединенных системах управления. Кельн Монзесе, Милан, Италия, 8-9 марта 1994 г.

[24]

ДОДД С.В., МАККАЛЛА Т. мл. и СМИТ Дж.Дж. Как защитить ветровую турбину от молнии. Windbooks. А/я 4008, г.Сент Джосбэри, шт.Вермонт, США. ISBN:0-88016-072-1

[25]

ОДД С.В., МАККАЛЛА Т.М. мл. и СМИТ Дж.Дж. Рассмотрение конструкций для молниезащиты ветроэнергетических установок, 6 двухгодичная конференция и симпозиум по ветровой энергии, стр.687-695. Американское общество солнечной энергии, 1983 г.

[26]

ШМИД Р. Исследование образцов лопастей ротора из армированного стеклопластика ветровых электростанций с точки зрения молниезащиты. 24 международная конференция по молниезащите, стр.955-959, г.Бирмингем, Соединенное Королевство, 14-18 сентября 1998 г.

[27]

НИЛЬСЕН Й.О. и ПЕДЕРСЕН А.А. Отчет о состоянии работ для аванпроекта: Молниезащита ветроэнергетических установок - в особенности непроводящих лопастей ветроэнергетических установок. Политехнический институт Дании, декабрь 1994 г. (на датском языке)

[28]

ДРУММ Ф. Исследование сегментированных полос молниеотвода. 23 международная конференция ICLP по молниезащите, стр.796-800, г.Флоренция, Италия, 23-27 сентября 1996 г.

[29]

ДРУММ Ф. и БАУМЛ Дж. Координация изоляции сегментированных полос молниеотвода и их допустимая токовая нагрузка. 24 международная конференция по молниезащите, стр.918-923, г.Бирмингем, Соединенное Королевство, 14-18 сентября 1998 г.

[30]

ХАНСЕН Нл.Б., КОРМСГААРД Дж. и МОРТЕНСЕН И. Улучшенная система молниезащиты, увеличивающая надежность мульти-МВ лопастей. Копенгагенский береговой ветер, 2005 г.

[31]

СОРЕНСЕН Т., БРАСК М.Х., ОЛСЕН К., ОЛСЕН М.Л. и ГРАБАУ П. 24 международная конференция по молниезащите, стр.938-943, Бирмингем, Соединенное Королевство, 14-18 сентября 1998 г.

[32]

МЕДСЕН С.Ф. Взаимодействие между электрическими разрядами и материалами для лопастей ветроэнергетических установок, в частности, относительно молниезащиты. Политехнический университет Дании, докторская диссертация, март 2006 г.

[33]

ЛАРСЕН Ф.М. и СОРЕНСЕН Т. Новый порядок проведения квалификационных испытаний на удары молнии для больших лопастей ветроэнергетических установок. Материалы международной конференции по молнии и статическому электричеству, г.Блэкпул, Соединенное королевство, 2003 г.

[34]

Фундаментальное рассмотрение молниезащиты, заземления, металлизации и экранирования, Федеральное авиационное управление (FAA), 6950.20, 1978 г.

[35]

ГОНДОТ П., ЛЕПЕТИТ В., БИСИАЕВ А. и СОЛОЛЕВСКАЯ Н. Молниезащита авиационных конструкционных материалов. 23 международная конференция ICLP по молниезащите, стр.563-568, г.Флоренция, Италия, 23-27 сентября 1996 г.

[36]

МУЛЯДИ Е. и БАТТЕРФИЕЛД С.П. Молния и воздействие на генератор ветроэнергетических установок. Международное энергетическое агентство (IEA), ветряные исследования и разработки, приложение XI, 26 встреча экспертов. Молниезащита генераторных систем ветроэнергетических установок и проблемы электромагнитной совместимости в объединенных системах управления. Кельн Монзесе, Милан, Италия, 8-9 марта 1994 г.

[37]

ВАШМУТ P. Rotorblatt in Faserverbundbauweise fur Windkraftanlage AEOLUS II, Phase I/II, Statusbericht fur das Jahr 1990 zum Forschungsvorhaben 0328819 A/B des Bundesministeriums fur Forschung und Technologie. Отчет о состоянии работ 1990 г. Ветровая энергия, стр.279-297, Федеральное министерство по исследованиям и технологии (Германия), 1990 г., ISBN 3-8042-0517-8

[38]

БАЛДВИН Р.Е. Опыт по молниезащите самолетов и нефтехимических установок, применимый к генераторам ветроэнергетических установок. Международное энергетическое агентство (IEA), ветряные исследования и разработки, приложение XI, 26 встреча экспертов. Молниезащита генераторных систем ветроэнергетических установок и проблемы электромагнитной совместимости в объединенных системах управления. Кельн Монзесе, Милан, Италия, 8-9 марта 1994 г.

[39]

ЛЕННИНГ Ф.Е. Анализ прохождения тока молнии в анизотропном углепластике с использованием метода конечной разности, материалы международной конференции по молнии и статическому электричеству, г.Блэкпул, Соединенное Королевство, 2003 г.

[40]

КОТТОН И., ДЖЕНКИНС Н., ХАТЦИАРГИРИУ Н., ЛОРЕНЦОУ М., ХЕЙ С. и ХЕНКОК М. Молниезащита ветроэнергетических установок - Руководство для проектировщиков по лучшим методам организации производства. Университет Манчестерского института науки и техники (UMIST) - Предварительное издание - январь 1999 г.

[41]

БЕССЕРА М., В КУРЕЙ Упрощенная физическая модель для определения восходящей молнии, соединяющей начало соединительного лидера, Институт инженеров по электротехнике и радиоэлектронике (IEEE), Журналы по передаче энергии, том 21, N 2, апрель 2006 г.

[42]

БЕРТЕЛСЕН К., ЭРИХСЕН Н.В., СКОВ ЙЕНЕСЕН, М.Р.В., МЭДСЕН С.Ф. Применение численных моделей для определения точек попадания молнии в ветроэнергетические установки, материалы международной конференции по молнии и статическому электричеству, г.Париж, Франция, август 2007 г.

[43]

МЕДСЕН С.Ф., ХОЛБОЛЛ Дж., ХЕНРИКСЕН М., БЕРТЕЛСЕН К., ЭРИХСЕН Н.В. Новый метод испытаний для оценки системы молниезащиты лопастей ветроэнергетических установок, материалы 28 международной конференции по молниезащите, г.Канандзава, Япония 18-22 сентября 2006 г.

[44]

ХИТЕР Дж., РУИ Р. Сопоставление конфигурации электродов для моделирования повреждений, нанесенных ударом молнии, материалы международной конференции по молнии и статическому электричеству, г.Блэкпул, Соединенное Королевство, сентябрь 2003 г.

[45]

МЭК 62153-4-3 Методы испытаний металлических кабелей связи. Часть 4-3. Электромагнитная совместимость (ЭМС). Поверхностное проходное полное сопротивление. Трехкоординатный метод.

          

УДК 621.311.24/534.6:006.354

ОКС 27.180

Ключевые слова: возобновляемая энергетика, ветроэнергетика, установки ветроэнергетические, молниезащита, зона молниезащиты, грозовые разряды, удар молнии, вспышка молнии, заземление, уровень молниезащиты




Электронный текст документа

подготовлен АО "Кодекс" и сверен по:

официальное издание

М.: Стандартинформ, 2015