Статус документа
Статус документа

ГОСТ Р 54500.3.2-2013/Руководство ИСО/МЭК 98-3:2008/Дополнение 2:2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 2. Обобщение на случай произвольного числа выходных величин

Введение


В "Руководстве по выражению неопределенности измерений" (GUM) [JCGM 100:2008] рассматриваются, в основном, одномерные модели измерений, включающие в себя единственную скалярную выходную величину. Однако на практике часто встречаются измерительные задачи с двумя и более выходными величинами. Примеры таких задач имеются в GUM для случаев электрических измерений с тремя выходными величинами [JCGM 100:2008 (раздел Н.2 приложения Н)] и температурных измерений с двумя выходными величинами [JCGM 100:2008 (раздел Н.3 приложения Н)]. В настоящем стандарте рассматриваются многомерные модели измерения, включающие в себя произвольное число выходных величин. В большинстве случаев выходные величины коррелированны, поскольку зависят от общих входных величин. В настоящем стандарте рассматривается обобщение способа оценивания неопределенности по GUM [JCGM 100:2008 (раздел 5)], позволяющее получить оценки выходных величин, а также стандартные неопределенности и ковариации, соответствующие этим оценкам. Входные и выходные величины модели измерения могут быть действительными или комплексными.

Дополнение 1 к GUM [JCGM 101:2008] рассматривает трансформирование распределений [JCGM 100:2008 5] при заданной модели измерения как основу для выражения неопределенности измерения и реализацию данной процедуры посредством метода Монте-Карло [JCGM 100:2008 (раздел 7)]. Как и в GUM, в нем рассмотрены только модели с единственной скалярной выходной величиной [JCGM 101:2008 (раздел 1)]. Настоящий стандарт рассматривает обобщение метода Монте-Карло с целью получения дискретного представления совместного распределения вероятностей для выходных величин многомерной модели. Такое дискретное представление служит основой для получения оценок выходных величин, их стандартных неопределенностей и ковариаций. Использование метода Монте-Карло является альтернативой способу оценивания неопределенности по GUM, особенно в ситуациях, когда последний не способен обеспечить достоверные результаты измерений вследствие того, что (а) линеаризация модели приводит к существенному искажению результатов измерения или (б) распределение вероятностей для выходной величины (или величин) не может быть описано многомерным нормальным распределением.

Настоящий стандарт устанавливает также метод определения области охвата для выходных величин многомерной модели, являющейся аналогом интервала охвата в случае одномерной модели, для заданной вероятности охвата. Рассматриваются области охвата в форме эллипсоидов или прямоугольных параллелепипедов. Применение численных процедур расчета неопределенности измерения с использованием метода Монте-Карло дает возможность приближенного построения областей охвата наименьшего объема.