Дополнительная информация о системных перенапряжениях
D.1 Общие вопросы
Электронное оборудование, которое входит в бытовую и деловую среду все больше, часто включает коммуникационный порт так же как обычный порт шнура питания. Типичный пример персональный компьютер (ПК) с модемным соединением. Хотя и питание, и коммуникационные системы могут включать цепи защиты от импульсных перенапряжений, скачки тока в системе, вызывают сдвиг потенциала его контрольной точки, в то время как потенциал другой системной контрольной точки остается неизменным. Различие потенциала между этими двумя контрольными точками появляется между двумя портами ПК. В зависимости от типа ПК/модема и его защищенности, которая часто не определена, это различие потенциала может привести к некоторым нарушениям в работе или повреждениям.
Были предложены различные схемы для уменьшения нарушений в работе или повреждений из-за разности потенциалов. Самым эффективным было бы оптическое разъединение, вставленное в линию связи, но расходы и встройка нежелательны для типового применения в бытовых условиях. Увеличение защищенности системы ПК со стороны изготовителей, учитывая рыночную экономику, вряд ли произойдут, и фактически они не эффективны для некоторых из напряжений, которые могут появиться. Следующий пример, из опыта Северной Америки (в этом примере рассмотрены линии, типичные для телефонии), иллюстрирует проблему, которую, в зависимости от определенных национальных методов, можно встретить в других установках.
Примечание - Для защиты телекоммуникаций и сигнальных линий используют металлические проводники системы молниезащиты, включая системные взаимодействия. Рассматривают следующие линии:
- телекоммуникационные линии, соединяющие коммутатор с сетевым окончанием;
- телекоммуникации или сигнальные линии, соединяющие оборудование, расположенное в различных зданиях, например, линии ISDN или сигнальные линии между компьютерами.
D.2 Пример смещения потенциала ПК/модема
На рисунке D.1 показан ПК, оборудованный модемом, подключенный к сети трехпроводным кабелем, который включает проводник заземления, устанавливающий потенциал шасси равным потенциалу заземляющей шины распредустройства. Модем соединяется с телефонным выходом в комнате и на входе телефонной связи имеется дополнительная защита от перенапряжений, установленная телефонной компанией. Для худшего варианта (часто встречаемого) электрический и телефонный ввод входят в дом с противоположных концов. В этом случае, проводник заземления защиты входа соединяется с самой близкой точкой заземления
системы, которая доступна, как показано на рисунке. Этот дополнительный проводник заземления может быть непосредственно подключен к распределительному шкафу.
Рисунок D.1 - Соединение ПК/модема с системой питания и коммуникационной системой
Как приведено ниже эта альтернативная маршрутизация не имеет значения при импульсном воздействии на телефонную связь. Устройство защиты от импульсных перенапряжений со стороны питания ПК на рис.D.1, откуда пользователь ожидает появления возмущений с наибольшей вероятностью, рассматривается как дополнительное. В действительности наличие УЗИП на стороне питания не оказывает никакого эффекта на результат рассматриваемого сценария.
На рисунке D.2 приведен сценарий, при котором импульсное перенапряжение от телефонной сети воздействует на ввод питания при условии, что телефонная компания установила специальный УЗИП, являющийся частью установки. Такое устройство упоминается как Сетевое интерфейсное устройство (NID). Импульсное перенапряжение отводится NID через проводник уравнивания потенциалов на заземлитель. В худшем случае, два ввода располагаются в противоположных концах дома, поэтому у соединения для уравнивания потенциалов может быть существенная длина. Наличие УЗИП на стороне питания не имеет никакого значения для этого сценария, на рисунке D.2 приведен УЗИП, установленный потребителем, и ограничитель перенапряжения, например, в распредустройстве или шкафе учета.
________________
NID устанавливается телефонной компанией, для защиты ее внешнего оборудования от перенапряжений или импульсов возникающих в цепях абонента. Это не обеспечивает защиты абонента от импульсных перенапряжений, хотя может показаться, что защищает. Однако NID учитывается в этом сценарии импульсного перенапряжения.
Рисунок D.2 - Разность потенциалов на ПК/модеме во время импульса тока
Текущий "импульсный ток" на рисунке D.2 течет по трубе, создавая магнитный поток в замкнутом контуре, сформированным трубой и проводниками в верхней части цепи - телефонный провод, соединяющий ПК с NID и ответвления, соединяющего ПК с входом питания. Быстро изменяющийся импульсный ток вызывает напряжение в контуре, которое появляется в точке, где контур разомкнут - изоляция между модемными терминалами и терминалами питания ПК.
Другой способ объяснить вызванную разность потенциалов, основанный на том же самом электромагнитном законе, предполагает, что у длинного канала есть индуктивность , что приводит к возникновению напряжения , которое возникает вдоль канала и следовательно прикладывается к портам ПК. Однако объяснение, основанное на потокосцеплении, более полезно, потому что оно указывает на влияние геометрии контура, а не только на длину канала. Теоретически, если контур чрезвычайно узкий - прокладка проводов близко к проводнику заземления (что рекомендуется с точки зрения обеспечения ЭМС - см. приложение F), его область была бы незначительной и потокосцепление, значительно уменьшено. В действительности, однако, площадь контура в реальной установке всегда будет существенной.
В приведенной схеме разность потенциалов появляется между любым из двух телефонных проводов на одной стороне ПК и нейтральным проводником N или проводником заземления G с другой стороны ПК, при несрабатывании УЗИП или разрядника, присутствие УЗИП на стороне порта питания ПК не оказывает никакого влияния на результат при этом сценарии импульсного перенапряжения, поступающего от телефонной станции и оказывающем отрицательное воздействие при его отводе нормально функционирующим NID.
Подобным образом импульсное перенапряжение со стороны питания и не отведенное в точке ввода, может достигнуть точки подключения ПК, где благоразумный домовладелец установил УЗИП для защиты от импульсных перенапряжений со стороны линии электропередачи.
Здесь снова возникает тупиковая ситуация, когда ток импульсного воздействия, отведенный УЗИП, возвращается через землю и проводник заземления или/и нейтральный проводник. Этот импульсный ток создает магнитный поток в том же самом контуре, как и в первом сценарии, с тем же самым возможным результатом повреждения или разрушения.
D.3 Пример восстановительных действий