Главная цель. Обнаружение отказов во время адресации, записи, запоминания и считывания.
Примечание - Случайные сбои, перечисленные в МЭК 61508-2, таблица А.1, являются отказами, которые должны быть обнаружены в процессе эксплуатации или должны быть проанализированы при выводе доли безопасных отказов. Причинами случайных ошибок являются: (1) альфа-частицы, образовавшиеся в результате процесса распада, (2) нейтроны, (3) внешний источник электромагнитного излучения и (4) внутренние перекрестные помехи. Внешний источник электромагнитного излучения должен соответствовать другим требованиям настоящего стандарта.
Результаты воздействия альфа-частиц и нейтронов могут быть обработаны функционирующими средствами обеспечения полноты безопасности. Но такие средства обеспечения полноты безопасности эффективны для случайных отказов аппаратных средств и не эффективны для случайных сбоев, например тесты для ОЗУ, такие как "блуждающая траектория", GALPAT и т.д., не являются эффективными, тогда как методы, использующие контроль четности и коды с исправлением ошибок, возвращающие содержимое ячеек памяти, являются эффективными.
Случайный сбой происходит, когда излучение вызывает такой заряд, который может изменить состояние или переключить с низкого уровня напряжения на высокий ячейку полупроводниковой памяти, регистр, защелку или триггер. Такую случайную ошибку называют "исправимой", потому что сама схема излучением не повреждается. Такие ошибки разделяют на однобитовые нарушения (SBU) или однособытийные нарушения (SEU) и многобитовые нарушения (MBU).
Если схема, в которой произошел сбой, является запоминающим элементом, таким как ячейка памяти или триггер, то ее состояние сохранится до следующей (намеченной) операции записи. Новые данные будут храниться правильно. В комбинаторной схеме это приведет скорее к незначительному сбою, потому что существует постоянный поток энергии из компонента, управляющего этим узлом. Влияние на соединительные провода и линии связи также может быть незначительным. Однако из-за большей емкости воздействие на них альфа-частиц и нейтронов считают незначительным.
Такие случайные сбои могут происходить в переменной памяти любого вида, то есть в DRAM, SRAM, регистровой памяти в MP, кэш-памяти, конвейерах, регистрах конфигурации устройств, таких как АDС, DMA, MMU, контроллер прерываний, сложные таймеры. Чувствительность к альфа-частицам и нейтронам зависит от напряжения питания и геометрии. Небольшие конфигурации с напряжением питания 2,5 В и особенно ниже 1,8 В потребуют более серьезной оценки и более эффективных мер защиты.
Интенсивность случайных сбоев для (встроенной) памяти находится в диапазоне от 700 Fit/MBit до 1200 Fit/MBit [см. перечисления а) и i) ниже]). Это эталонное значение для сравнения с данными, полученными для устройств, реализованных на основе кремниевой технологии. До недавнего времени полагали, что SBU были доминирующими, но последний прогноз (см. перечисление а) ниже) показывает растущий процент MBU в общей интенсивности случайных сбоев (SEP) для технологий менее 65 нм.
Более подробная информация о случайных сбоях дана в следующих источниках:
a) Altitude SEE Test European Platform (ASTEP) and First Results in CMOS 130 nm SRAM. J.-L. Autran, P. Roche, С. Sudre et al. Nuclear Science, IEEE Transactions on Volume 54, Issue 4, Aug. 2007 Page(s):1002-1009;
b) Radiation-Induced Soft Errors in Advanced Semiconductor Technologies, Robert С. Baumann, Fellow, IEEE, IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 5, NO. 3, SEPTEMBER 2005;
c) Soft errors' impact on system reliability, Ritesh Mastipuram and Edwin С Wee, Cypress Semiconductor, 2004;
d) Trends And Challenges In VLSI Circuit Reliability, С. Costantinescu, Intel, 2003, IEEE Computer Society;
e) Basic mechanisms and modeling of single-event upset in digital microelectronics, P.E. Dodd and L.W. Massengill, IEEE Trans. Nucl. Sci., vol. 50, no. 3, pp.583-602, Jun. 2003;
f) Destructive single-event effects in semiconductor devices and ICs, F.W. Sexton, IEEE Trans. Nucl. Sci., vol. 50, no. 3, pp.603-621, Jun. 2003;
g) Coming Challenges in Microarchitecture and Architecture, Ronen, Mendelson, Proceedings of the IEEE, Volume 89, Issue 3, Mar 2001 Page(s):325-340;
h) Scaling and Technology Issues for Soft Error Rates, A Johnston, 4th Annual Research Conference on Reliability Stanford University, October 2000;
i) International Technology Roadmap for Semiconductors (ITRS), several papers.
A.5.1 Тесты "шахматная доска" или "марш" для памяти с произвольным доступом
Примечание - Ссылка на данный метод/средство приведена в МЭК 61508-2 (см. приложение А, таблица А.6).
Цель. Обнаружение преимущественно статических битовых ошибок.
Описание. Расположенная в шахматном порядке битовая комбинация нулей и единиц записывается в ячейки памяти с битовой организацией. Затем эти ячейки анализируются попарно с тем, чтобы убедиться в их одинаковости и правильности. Адрес первой ячейки такой пары является переменным, а адрес второй ячейки этой пары образуется путем битового инвертирования первого адреса. При первом прохождении диапазон адресов памяти проходят в направлении более высоких адресов переменных адресов, а при втором прохождении - в направлении более низких адресов. После этого оба прохождения повторяются с заранее заданным инвертированием. При обнаружении какого-либо различия выдается сообщение об отказе.
При "маршевом" тестировании памяти с произвольным доступом ячейки памяти с битовой организацией инициализируются унифицированным потоком битов. При первом прохождении ячейки анализируются в нисходящей последовательности; проверяется правильность содержимого каждой ячейки и ее содержимое инвертируется. Основа, созданная в первом прохождении, рассматривается при втором прохождении в убывающем порядке и так же обрабатывается. Первые прохождения повторяются с инвертируемыми предварительными значениями в третьем и четвертом прохождениях. При обнаружении различий выдается сообщение об отказе.
А.5.2 Тест "блуждающая траектория" для памяти с произвольным доступом
Примечание - Ссылка на данный метод/средство приведена в МЭК 61508-2 (см. приложение А, таблица А.6).
Цель. Обнаружение статических и динамических ошибочных битов и перекрестных помех между ячейками памяти.
Описание. Тестируемая область памяти инициализируется унифицированным потоком битов. Затем первая ячейка инвертируется, и остальная часть памяти анализируется на правильность. После этого первая ячейка повторно инвертируется для возврата в исходное значение, и вся процедура повторяется для следующей ячейки. Второе прохождение "модели блуждающего бита" осуществляется при инверсии всех первоначально назначенных значений памяти. При обнаружении различий выдается сообщение об ошибке.
А.5.3 Тест "GALPAT" или "Прозрачный GALPAT" для памяти с произвольным доступом
Примечание - Ссылка на данный метод/средство приведена в МЭК 61508-2 (см. приложение А, таблица А.6).
Цель. Обнаружение статических битовых отказов и большой части динамических связей.