Статус документа
Статус документа

ГОСТ Р 54411-2011/ISO/IEC/TR 24722:2007 Информационные технологии (ИТ). Биометрия. Мультимодальные и другие мультибиометрические технологии

     4.1 Общие положения


Понятия мультимодальный и мультибиометрический указывают на применение более одной модальности, одного датчика, одного экземпляра и/или алгоритма в той или иной комбинации для принятия определенного решения в отношении биометрической идентификации или верификации. Метод объединения нескольких образцов, степеней схожести или решений о схожести может быть элементарным или сложным с математической точки зрения. В настоящем стандарте под любым методом комбинирования подразумевается одна из форм объединения. Методы комбинирования рассмотрены в разделе 5.

Мультимодальная биометрия появилась в 70-х годах XX века. Комбинированные измерения стали рассматриваться как перспективные для биометрических систем. Считалось, что комбинация нескольких измерений повысит уровень безопасности путем уменьшения вероятности ложного допуска, а также уровень удобства пользователя путем уменьшения вероятности ложного недопуска. Применение данных методов обеспечило успешное внедрение автоматической системы распознавания отпечатков пальцев (АСРОП), начатое в 80-е годы. В АСРОП ранее не использовались мультимодальные технологии, однако большинство методов объединения, приведенных в настоящем стандарте, успешно реализованы при использовании только отпечатков пальцев. Некоторые виды объединения, реализованные в АСРОП, включают в себя:

-  объединение изображений (образцов) для создания одного прокатанного изображения на основе серии плоских оттисков с помощью устройства, сканирующего в режиме реального времени;

-  объединение шаблонов при использовании алгоритмов извлечения нескольких признаков из каждого изображения отпечатка пальца;

-  мультиэкземплярное объединение при использовании отпечатков десяти пальцев;

-  объединение мультипредставлений при использовании прокатанных и оттисковых изображений отпечатков пальцев;

-  объединение алгоритмов с целью повышения эффективности (уменьшения затрат, уменьшения количества вычислений, увеличения пропускной способности). В основном устройства сопоставления применяют как набор фильтров в порядке возрастания вычислительной сложности. Данные устройства, как правило, реализуются как сочетание объединения на уровне принятия решения и объединения на уровне степеней схожести;

- объединение алгоритмов с целью повышения точности (уменьшения вероятности ложного допуска и/или вероятности ложного недопуска, снижения чувствительности к данным низкого качества). Устройства сопоставления применяют параллельно с объединением конечных степеней схожести.

Методы объединения способствовали внедрению АСРОП, так как обеспечили улучшение показателей точности и эффективности.

До настоящего момента в работах по мультибиометрии внимание акцентировалось только на уменьшении числа ошибок ложного допуска и ложного недопуска. В [65] рассмотрено использование мультибиометрии в целях улучшения показателей удобства применения, безопасности и точности. Основные различия между мультибиометрическими категориями приведены в таблице 2. Ключевой термин, определяющий наименование категории, выделен жирным шрифтом.


Таблица 2 - Элементарные двухкомпонентные мультибиометрические категории

Категория

Модальность

Алгоритм

Биометрическая характеристика (например, часть тела)

Датчик

Мультимодальная

2 (всегда)

2 (всегда)

2 (всегда)

2 (обычно)

Мультиалгоритмическая

1 (всегда)

2 (всегда)

1 (всегда)

1 (всегда)

Мультиэкземплярная

1 (всегда)

1 (всегда)

2 экземпляра одной характеристики (всегда)

1 (обычно)

Мультидатчиковая

1 (всегда)

1 (обычно)

1 (всегда, тот же экземпляр)

2 (всегда)

Мультипредставление

1

1

1

1

Возможны случаи, когда два образца с разных датчиков могут быть обработаны сначала с помощью отдельных алгоритмов "выделения признаков", а затем с помощью общего алгоритма сопоставления ("полуторный алгоритм") или с помощью двух разных алгоритмов.

Исключением является случай, когда мультимодальную систему с одним датчиком используют для получения двух разных модальностей. Например, изображение высокого разрешения используют для выделения лица и радужки или лица и структуры лица.

Исключением может являться использование двух отдельных датчиков для получения одного экземпляра, например двухпальцевого датчика отпечатков пальцев.

          

Мультимодальные биометрические системы принимают входящий сигнал с одного или множества датчиков, которые получают биометрические характеристики двух или более модальностей. Например, одна система, комбинирующая информацию о лице и радужной оболочке глаза для биометрического распознавания, рассматривается как мультимодальная система независимо от того, разными устройствами были получены изображения лица и радужной оболочки глаза или одним и тем же. Не требуется, чтобы разные измерения были объединены математически. Например, система с распознаванием отпечатка пальца и голоса будет считаться мультимодальной даже при использовании алгоритма "ИЛИ", позволяющего распознавать пользователя с помощью той или другой модальности.

Мультиалгоритмические биометрические системы получают один образец с одного датчика и обрабатывают данный образец с помощью двух и более алгоритмов. Данный метод может быть применен к любой модальности. Максимальный эффект может быть получен при применении алгоритмов, основанных на различных независимых принципах (такие алгоритмы называют ортогональными).

Мультиэкземплярные биометрические системы применяют один (несколько) датчик(ов) для получения образцов двух или более различных экземпляров одной и той же биометрической характеристики. Например, системы, получающие изображения нескольких пальцев, считают мультиэкземплярными, а не мультимодальными. Однако системы, получающие, например, последовательные кадры изображений лица или радужки, рассматривают как системы мультипредставления, а не мультиэкземплярные.

Мультидатчиковые биометрические системы получают один и тот же экземпляр биометрической характеристики с помощью двух или более различных датчиков. Обработку нескольких образцов проводят с помощью одного алгоритма или комбинации нескольких алгоритмов. Например, приложение по распознаванию лица можно использовать как камеру, работающую в видимом диапазоне, так и инфракрасную камеру, работающую на определенной длине(ах) волны (волн) инфракрасного излучения.

Для определенных приложений при эксплуатации существует множество компромиссных решений, позволяющих улучшить эксплуатационные характеристики (точность идентификации или верификации, скорость и пропускную способность системы, устойчивость к ошибкам и потребность в ресурсах), повысить устойчивость к обману, удобство использования, устойчивость к воздействию факторов окружающей среды, снизить затраты [44].

Для крупномасштабных систем распознавания личности существуют дополнительные требования, такие как эффективность работы и наличие технической поддержки, надежность, стоимость приобретения, стоимость жизненного цикла и плановый ответ системы на идентифицированные способы атаки, влияющие на корректную работу системы [44].