Статус документа
Статус документа

ГОСТ Р 54426-2011 (МЭК 60480:2004) Руководство по проверке и обработке элегаза (SF(6)), взятого из электрооборудования, и технические требования к его повторному использованию

     5 Примеси и их источники

5.1 Предварительная оценка

Элегаз, извлеченный из действующего электрооборудования, содержит несколько видов примесей. Ряд из них уже присутствует в составе исходного элегаза как результат технологического процесса. Происхождение этих примесей и их допустимое количество рассматривается в [5] и [9]. Предполагаемое количество дополнительных примесей в элегазе, извлеченном из электрооборудования, образуется в результате как действия газа, так и работы оборудования. В таблице 1 приведены данные об основных посторонних примесях и их источниках [1] и [2].


Таблица 1 - Происхождение примесей в элегазе

Состояние и использование элегаза

Источники примесей

Возможные примеси

При управлении и эксплуатации

Утечка и неполное извлечение. Десорбция

Воздух, масла,

Функция изоляции

Частичные разряды: коронный и искровой разряды

, , , ,

Коммутация оборудования

Эрозия под влиянием коммутационной дуги

, , , , , , , , , ,


Механическая эрозия

Металлическая пыль и частицы

Внутренняя дуга

Плавление и разложение материалов

Воздух, , , , , , , , .

Металлическая пыль и частицы, , , ,



5.2 Примеси как результат функционирования и обслуживания

Заполнение и извлечение элегаза из оборудования может привести к возникновению дополнительных воздушных включений и влаги.

Влага может быть также результатом десорбции с внутренней поверхности оборудования или его полимерных частей. Масло из работающего оборудования (насосы и компрессоры) также может случайно проникнуть в элегаз.

5.3 Примеси в электрооборудовании при выполнении элегазом функций электроизоляции

Основным процессом при выполнении элегазом функций электроизоляции является разложение элегаза под действием электрических разрядов (коронный и исходный разряды). В результате образуются продукты разложения элегаза, такие как , и , которые при соединении с и образуют такие соединения, как , , , и . Вследствие небольшой мощности частичных разрядов суммарное количество этих соединений весьма незначительно.

5.4 Примеси при коммутации электрооборудования

При отключении тока высокотемпературный дуговой разряд приводит к образованию продуктов разложения элегаза; также это приводит к испарению металла с электродов, пластика и посторонних примесей. Кроме того, имеют место химические реакции между образовавшимися продуктами (см. таблицу 1).

Количество побочных продуктов регулируют рядом операций, конструкцией оборудования и использованием адсорберов (твердых адсорбентов).

Коммутируемое оборудование может также содержать частицы и металлическую пыль в результате взаимодействия контактов.

5.5 Примеси при внутренних дуговых разрядах

Внутренние дуговые разряды возникают крайне редко. Возникающие примеси в элегазе поврежденного оборудования подобны тем, что образуются при коммутации оборудования. Различие состоит в количестве примесей, которых оказывается вполне достаточно, с большой вероятностью риска, для образования токсичных веществ [9]. Кроме того, при возникновении внутренних дуговых разрядов происходит значительное испарение металлических материалов с образованием дополнительных продуктов реакции.