В подсистеме сравнения происходит сравнение признаков субъекта с признаками одного или более шаблонов и передача значений степеней схожести в подсистему принятия решения. Степени схожести показывают степень соответствия между сравниваемыми шаблонами. В некоторых случаях признаки представляются в виде шаблонов, хранимых в базе данных. При верификации имеется единственный запрос регистрации субъекта, поэтому подсистема сравнения возвращает единственное значение степени схожести. При идентификации происходит сравнение признаков субъекта с признаками нескольких или всех шаблонов, и возвращается значение степени схожести для каждого сравнения или список "кандидатов" на соответствие из базы данных.
Модуль сопоставления паттернов сравнивает данные образца признака с предварительно зарегистрированными данными признака ("контрольными шаблонами") в базе данных и создает цифровой "результат сопоставления". Если и шаблон, и признак представляют собой вектор, то сопоставление может быть таким же простым, как вычисление Евклидова расстояния. Вместе с тем, могут быть применены и нейронные сети или статистические измерения, например, отношения правдоподобия. На данный момент алгоритмы сопоставления не стандартизированы в ИСО/МЭК СТК 1/ПК 37, так как многие алгоритмы являются "конфиденциальной информацией компании" или субъектов права интеллектуальной собственности или патентного права, но концепция "ПБУ сравнения" полноценно отражена. Независимо от используемой техники сопоставления паттернов шаблоны и признаки, выделенные из образцов, не будут полностью совпадать из-за повторяющихся моментов, которые были описаны выше (см. 4.2.1). В конечном итоге, результаты сопоставления, определенные модулем сопоставления паттернов, должны быть расшифрованы подсистемой принятия решения.
В таких системах, как верификация личности по голосу, "шаблоны" регистрации могут быть "абстрактными шаблонами" процесса генерации признаков - совершенно другие структуры данных, нежели наблюдаемые признаки. Модуль сопоставления паттернов определяет совместимость наблюдаемых признаков с сохраненным абстрактным шаблоном. Некоторые модули сопоставления паттернов могут даже распорядиться о проведении адаптивного повторного вычисления признаков, выделенных из входящих данных, чтобы узнать, можно ли найти более хорошие совпадения посредством незначительных корректировок во входящих данных. Этот процесс может быть проведен в абстрактном шаблоне БиоАПИ при соответствующем применении ПБУ.