Статус документа
Статус документа

ГОСТ Р 8.736-2011 Государственная система обеспечения единства измерений (ГСИ). Измерения прямые многократные. Методы обработки результатов измерений. Основные положения (с Поправкой)

Приложение Г
(справочное)

     
Проверка гипотезы о нормальности распределения результатов измерений при числе измерений 50, критерий

Г.1 Критерий Мизеса-Смирнова использует статистику, имеющую вид

,


где - теоретическая функция распределения;     

- эмпирическая функция распределения;     

- весовая функция, область определения которой представляет собой область значений функции .

Конкретный вид статистики (или, точнее, ) зависит от вида весовой функции. Как правило, используют весовые функции двух видов: , при которой все значения функции распределения обладают одинаковым весом, и , при которой вес результатов измерений увеличивается на "хвостах" распределений. В приведенном критерии использована весовая функция второго вида, поскольку на практике различия между распределениями наиболее отчетливы в области крайних значений. Однако почти всегда малое число результатов измерений имеется как раз в области крайних значений. Поэтому целесообразно придать этим результатам больший вес.

Если принять весовую функцию второго вида, то статистика после выполнения интегрирования имеет вид

,    (Г.1)*


где   - результаты измерений, упорядоченные по значению;

- значение функции теоретического распределения при значении аргумента, равном (1, ..., ).

________________

* Формула и экспликация к ней соответствуют оригиналу. - Примечание изготовителя базы данных.


Результаты измерений рекомендуется свести в таблицу, аналогичную таблице Г.1 расчетного примера применения критерия , а соответствующие им значения внести в третий столбец таблицы, аналогичной таблице Г.2 этого же примера.

Статистика подчиняется асимптотическому (при ) распределению


Значения функции распределения для 02,6 с шагом 0,01 приведены в таблице Г.3.

Г.2 Применение критерия требует выполнения большого объема вычислительных операций, но этот критерий более мощный, чем критерий Пирсона . Число результатов измерений при использовании этого критерия должно быть более 50.

Г.3 При использовании критерия вычисления проводят в следующем порядке:

Г.3.1 Вычисляют значение статистики по формуле (Г.1).

Промежуточные вычисления по формуле (Г.1) рекомендуется сводить в таблицу, аналогичную таблице Г.2 примера. После заполнения таблицы суммируют значения, внесенные в ее последний столбец. Значение величины находят, подставляя полученную сумму в формулу (Г.1).

Г.3.2 По таблице Г.3 находят значение функции распределения для , равного вычисленному значению .

Г.3.3 Задают уровень значимости . Рекомендуется выбирать значение , равное 0,1 или 0,2.

Г.3.4 Если , то гипотезу о согласии эмпирического и теоретического распределений отвергают, если , то гипотезу принимают.

Пример применения критерия