Статус документа
Статус документа

ГОСТ Р 54500.3.1-2011/Руководство ИСО/МЭК 98-3:2008/Дополнение 1:2008 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло

     8 Проверка результатов

8.1 Проверка результатов оценивания неопределенности по GUM сравнением с методом Монте-Карло

8.1.1 Способ оценивания неопределенности по GUM во многих случаях работает хорошо. Однако не всегда можно сразу определить, соблюдены ли все условия для его применения (см. 5.7 и 5.8). Обычно гораздо проще оценить неопределенность с использованием метода Монте-Карло (при наличии соответствующего программного обеспечения), чем выяснить, выполнены ли все условия оценивания по GUM [8]. При наличии сомнений в обоснованности применения способа оценивания по GUM полученные с его помощью результаты нуждаются в проверке, а поскольку диапазон условий, при которых может быть применен метод Монте-Карло, значительно шире, чем для метода по GUM, то для такой проверки рекомендуется сопоставить результаты оценивания по GUM с результатами оценивания методом Монте-Карло. Если сравнение подтвердит обоснованность применения GUM, то способ оценивания неопределенности по GUM можно будет применять в будущем для схожих задач. В противном случае следует рассмотреть возможность замены на другой способ оценивания неопределенности, включая тот же метод Монте-Карло.

8.1.2 При сравнении двух методов рекомендуется руководствоваться следующей двухэтапной процедурой:

a) применить способ оценивания неопределенности по GUM (возможно с учетом членов высшего порядка разложения функции измерения в ряд Тейлора в законе трансформирования неопределенностей) (см. 5.6), для определения 100%-ного интервала охвата , где - заданная вероятность охвата;

b) применить адаптивную процедуру Монте-Карло (см. 7.9.4) для получения стандартной неопределенности и границ и заданного 100%-ного интервала охвата для выходной величины (вероятностно симметричного или наименьшего) (см. также 8.2).

8.1.3 Процедура сравнения позволяет определить, согласуются ли интервалы охвата, полученные в соответствии со способом оценивания неопределенности по GUM и методом Монте-Карло, в пределах заданной точности вычислений. Точность вычислений для границ интервалов охвата определяют через точность выражения стандартной неопределенности числом существенных значащих цифр в ее десятичном представлении (сравни с 7.9.2). Для этого:

a) определяют предел погрешности вычисления для , как указано в 7.9.2;

b) сравнивают интервалы охвата, полученные в соответствии со способом оценивания неопределенности по GUM и методом Монте-Карло, чтобы определить, получено ли в значениях границ интервала охвата, вычисленных по GUM, необходимое число верных значащих цифр. При этом определяют:

,                                                (19)

     
,                                                 (20)


т.е. абсолютные значения разности соответствующих границ двух интервалов охвата. Если как , так и не превышают , то способ оценивания неопределенности по GUM в этом случае можно считать применимым.

Примечание - Результат сравнения будет зависеть от того, какой вероятности охвата соответствуют сравниваемые интервалы. Поэтому проверку выполняют только для конкретной заданной вероятности охвата .

8.2 Применение метода Монте-Карло при проведении проверки

Для выполнения проверки по 8.1 метод Монте-Карло должен быть реализован для достаточно большого числа испытаний (см. 7.2). Если обозначить через число существенных значащих цифр в десятичном представлении при проверке применимости способа оценивания по GUM, а через - допустимую погрешность вычисления (см. 7.9.2), то для получения в целях проверки результатов методом Монте-Карло рекомендуется использовать его адаптивный вариант (см. 7.9.4) до достижения погрешности вычисления [т.е. в 7.9.4 на этапе k) следует заменить на ].

Примечание - В среднем уменьшение погрешности вычисления до требует повышения числа испытаний в 25 раз. Выполнение операций с векторами столь большой размерности может представлять собой серьезную проблему для ряда компьютеров. В этом случае для вычисления статистических оценок рекомендуется использовать приближение гистограммой для ряда . При этом частота попаданий в соответствующий класс гистограммы уточняется в ходе итераций (см. 7.8.3, примечание 1).