Статус документа
Статус документа

ГОСТ Р 54500.3.1-2011/Руководство ИСО/МЭК 98-3:2008/Дополнение 1:2008 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло

     5 Общие принципы

     

    5.1 Основные этапы оценки неопределенности

5.1.1 Основные этапы оценки неопределенности включают в себя формулировку измерительной задачи, трансформирование распределений и получение окончательного результата:

a) формулировка измерительной задачи включает в себя:

1) задание выходной величины (измеряемой величины);

2) выявление входных величин , от которых зависит выходная величина ;

3) составление модели измерения, определяющей взаимосвязь с входными величинами ;

4) приписывание распределений вероятностей (нормального, прямоугольного и т.д.) входным величинам (или совместного распределения вероятностей входным величинам, не являющимся независимыми) на основе имеющейся информации;

b) трансформирование распределений предусматривает определение плотности распределения вероятностей выходной величины на основе плотностей распределения вероятностей входных величин и используемой модели измерения;

c) получение окончательного результата предполагает использование плотности распределения вероятностей выходной величины для определения:

1) оценки математического ожидания величины в виде оценки ;

2) оценки стандартного отклонения величины в виде стандартной неопределенности , ассоциированной с [Руководство ИСО/МЭК 98-3 (Е.3.2)];

3) интервала охвата для величины , соответствующего заданной вероятности (вероятности охвата).

Примечание 1 - В некоторых случаях оценка выходной величины в виде математического ожидания может оказаться неприемлемой [см. Руководство ИСО/МЭК 98-3 (4.1.4)].

Примечание 2 - Некоторые величины, например подчиняющиеся распределению Коши, не имеют математического ожидания и стандартного отклонения. Однако интервал охвата для выходной величины всегда может быть построен.

5.1.2 При оценке неопределенности по GUM функции распределения входных величин в явном виде не используют. Однако в соответствии с Руководством ИСО/МЭК 98-3 (3.3.5) "...стандартную неопределенность типа А рассчитывают по плотности распределения вероятностей,... полученной из распределения частот..., а стандартную неопределенность типа В - по предполагаемой плотности распределения вероятностей, отражающей степень уверенности в появлении того или иного события.... Оба подхода используют общепринятые интерпретации понятия вероятности".

Примечание - Трактовка распределения вероятностей при определении оценки неопределенности типа В характерна для байесовского анализа [21, 27]. В настоящее время продолжаются исследования [22] границ применимости формулы Уэлча-Саттертуэйта для расчета числа степеней свободы, приписываемых стандартной неопределенности.

5.1.3 Формулировку измерительной задачи осуществляет метролог с возможным участием специалиста в той области знаний, в которой проводят измерение. В настоящем стандарте приведены рекомендации по выбору плотности распределения вероятностей [стадия 4) этапа а) в соответствии с 5.1.1] для некоторых общих случаев (см. 6.4). Этапы трансформирования распределений и получения окончательных результатов [б) и в) в соответствии с 5.1.1], для которых приведены подробные указания, не требуют дополнительной метрологической информации и могут быть выполнены с любой допустимой точностью для поставленной задачи.

Примечание - Как только этап постановки задачи а) в соответствии с 5.1.1 выполнен, тем самым плотность распределения вероятностей для выходной величины формально полностью определена. Однако вычисление математического ожидания, стандартного отклонения и интервала охвата может потребовать применения численных методов, обладающих некоторой степенью приближения.

5.2 Трансформирование распределений

В настоящем стандарте рассматривается общий эффективный способ определения (численным методом) функции распределения случайной величины :

.


Этот способ основан на применении метода Монте-Карло для трансформирования распределений входных величин (см. 5.9).

Примечание - Формально плотность распределения вероятностей случайной величины можно представить в виде [9]

,


где - дельта функции Дирака, и применять численные методы вычисления -кратного интеграла (поскольку в общем случае он не может быть взят аналитически). Однако такой способ численного вычисления плотности распределения вероятностей неэффективен.

5.3 Получение окончательного результата