Статус документа
Статус документа

ГОСТ Р 54500.3-2011/Руководство ИСО/МЭК 98-3:2008 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения

     3 Основные понятия


Дополнительное рассмотрение основных понятий можно найти в приложении D, в котором основное внимание уделено вопросам сопоставления (в том числе, графического) "истинного" значения, погрешности и неопределенности, и в приложении Е, где исследуются необходимость разработки и статистическая база Рекомендации INC-1 (1980), на которой основано настоящее Руководство. В приложении J приведен словарь основных математических символов, используемых в настоящем Руководстве.

3.1 Измерение

3.1.1 Целью измерения (В.2.5) является определение значения (В.2.2) измеряемой величины (В.2.9), т.е. значения конкретной величины (В.2.1, примечание 1), которую надо измерить. Поэтому измерению предшествует определение измеряемой величины, метода измерения (В.2.7) и методики измерения (измерительной процедуры) (В.2.8).

Примечание - Термин "истинное значение" (см. приложение D) не используется в настоящем Руководстве по причинам, указанным в D.3.5. Термины "значение измеряемой величины" и "истинное значение измеряемой величины" рассматриваются как эквивалентные.

3.1.2 Обычно результат измерения (В.2.11) является только аппроксимацией или оценкой (С.2.26) значения измеряемой величины и, таким образом, будет полным только в том случае, если он сопровождается указанием неопределенности (В.2.18) этой оценки.

3.1.3 На практике определение (дефиниция) измеряемой величины зависит от требований к точности измерения (В.2.14). Измеряемую величину следует определять с достаточной полнотой (с учетом необходимой точности измерений), чтобы для всех практических целей, связанных с измерением, значение измеряемой величины было единственным. Именно в таком смысле выражение "значение измеряемой величины" используется в настоящем Руководстве.

Пример - Если длину стального стержня номинальной длины 1 м нужно узнать с точностью до микрона, то определение измеряемой величины должно включать температуру и давление, при которых длина стержня должна быть измерена. Таким образом, определение измеряемой величины должно иметь вид, например: длина стержня при температуре 25,00 °С и давлении 101325 Па (с указанием, возможно, других необходимых параметров, например способа опирания стержня при измерении). Однако если длина стержня должна быть получена с точностью до миллиметра, то определение измеряемой величины не требует указания температуры, давления и иных аналогичных факторов.

Примечание - Недостаточно полное определение измеряемой величины может привести к росту составляющей неопределенности, которая в этом случае должна быть включена в оценку неопределенности результата измерения (см. D.1.1, D.3.4 и D.6.2).

3.1.4 Во многих случаях результат измерения получают на основе ряда наблюдений, выполненных в условиях повторяемости (В.2.15, примечание 1).

3.1.5 Предполагается, что причиной изменчивости результатов повторных наблюдений являются влияющие величины (В.2.10), от которых может зависеть результат измерений и которые невозможно поддерживать в точности постоянными.

3.1.6 Очень важно правильно составить математическую модель, с помощью которой совокупность повторных наблюдений преобразуется в результат измерения, поскольку помимо наблюдений в нее обычно необходимо включать различные влияющие величины, точные значения которых неизвестны. Эта неизвестность вносит вклад в неопределенность результата измерений наряду с изменчивостью результатов повторных наблюдений и с неточностью самой математической модели.

3.1.7 В настоящем Руководстве измеряемая величина рассматривается как скаляр, т.е. ее значение выражается единственным числом. Распространение на случай связанных между собой величин, определяемых одновременно в одном измерении, требует перейти от рассмотрения измеряемой скалярной величины и ее дисперсии (С.2.11, С.2.20, С.3.2) к измеряемой векторной величине и ковариационной матрице (С.3.5). В настоящем Руководстве измерение векторной величины рассматривается только в примерах (см. Н.2, Н.3 и Н.4).

3.2 Погрешности, случайные и систематические эффекты, поправки

3.2.1 Погрешность (В.2.19) результата измерения обусловлена несовершенством измерительной процедуры. Традиционно погрешность рассматривают как сумму двух составляющих: случайной (В.2.20) и систематической (В.2.21).

Примечание - Погрешность является идеализированным понятием, поскольку на практике ее точное значение неизвестно.

3.2.2 Предполагается, что случайная погрешность возникает из непредсказуемых временных или пространственных изменений влияющих величин. Следствием таких изменений, называемых далее случайными эффектами, являются изменения измеряемой величины при повторных наблюдениях. Хотя случайную погрешность результата измерения нельзя компенсировать введением поправки, ее можно уменьшить, увеличив число наблюдений. Математическое ожидание (ожидаемое значение) (С.2.9, С.3.1) случайной погрешности равно нулю.

Примечание 1 - Выборочное стандартное отклонение среднего арифметического значения ряда наблюдений (см. 4.2.3) не является случайной погрешностью среднего значения, хотя такое толкование встречается в некоторых публикациях. На самом деле эта величина является мерой неопределенности среднего значения, обусловленной случайными эффектами. Точное значение погрешности среднего значения, обусловленной этими эффектами, не может быть известно.

Примечание 2 - В настоящем Руководстве уделяется большое внимание различию терминов "погрешность" и "неопределенность". Эти слова не являются синонимами, отражают разные понятия, и их не следует путать друг с другом или использовать в неправильном значении.

3.2.3 Систематическую погрешность, так же как и случайную, нельзя устранить полностью, но зачастую можно уменьшить. Если систематическая погрешность возникает в результате известного действия влияющей величины на результат измерения (далее - систематического эффекта), то это влияние можно количественно оценить и, если оно существенно по сравнению с требуемой точностью измерения, внести поправку (В.2.23) или поправочный коэффициент (В.2.24) для его компенсации. Предполагается, что после внесения поправки математическое ожидание погрешности, обусловленной систематическим эффектом, становится равным нулю.

Примечание - Неопределенность поправки, вносимой в результат измерения для компенсации систематического эффекта, не является систематической погрешностью (часто называемой смещением) результата измерения, связанной с этим эффектом, как ее иногда определяют. На самом деле она представляет собой меру неопределенности результата из-за неполного знания о требуемом значении поправки. Погрешность, появляющаяся от неполной компенсации систематического эффекта, не может быть известна точно. Термины "погрешность" и "неопределенность" следует использовать правильно и следить за тем, чтобы не путать их.

3.2.4 Далее предполагается, что приняты все меры для выявления значимых систематических эффектов и соответствующие поправки внесены в результат измерения.

Пример - В результат измерения падения напряжения (измеряемая величина) на высокоомном резисторе вносят поправку, обусловленную конечным электрическим сопротивлением вольтметра для уменьшения систематического эффекта, вызванного присоединением вольтметра. Для вычисления поправки используют значения сопротивлений вольтметра и резистора, которые получены в результате других измерений и сами содержат неопределенности. Эти неопределенности учитывают при оценивании составляющей неопределенности измерения падения напряжения, связанной с вносимой поправкой и, в конечном счете, с систематическим эффектом вследствие конечного электрического сопротивления вольтметра.

Примечание 1 - Часто с целью исключить систематические эффекты измерительные приборы и системы настраивают или калибруют с использованием эталонов и стандартных образцов, однако при этом следует учитывать составляющие неопределенности, вносимые эталонами и стандартными образцами.

Примечание 2 - Случай, когда поправку на известный значимый систематический эффект не вносят, рассмотрен в примечании к 6.3.1 и в F.2.4.5.

3.3 Неопределенность

3.3.1 Неопределенность результата измерения отражает отсутствие точного знания значения измеряемой величины (см. 2.2). Результат измерения после внесения в него поправки на известные систематические эффекты остается только оценкой значения измеряемой величины, поскольку содержит неопределенности, связанные со случайными эффектами и неточностью поправки результата на систематические эффекты.

Примечание - Может оказаться, что результат измерения (после внесения поправки) будет очень близким к значению измеряемой величины и тем самым иметь пренебрежимо малую погрешность. Эту неисключенную малую систематическую погрешность не следует путать с неопределенностью результата измерения.

3.3.2 Разнообразие источников неопределенности измерений включает в себя: