3.1 Цель измерения состоит в получении информации об интересующей величине, называемой измеряемой величиной (JCGM 200, словарная статья 2.3). Измеряемой величиной может быть объем сосуда, разность потенциалов на клеммах батареи или массовая концентрация свинца в колбе с водой.
3.2 Абсолютно точных измерений не существует. При проведении измерения его результат зависит от измерительной системы (JCGM 200, словарная статья 3.2), методики измерения, квалификации оператора, внешних условий и других факторов [1]. Так, если измерять одну и ту же величину несколько раз одним способом и в одинаковых условиях, то, как правило, при достаточной разрешающей способности измерительной системы, позволяющей различать близкие показания (JCGM 200, словарная статья 4.1), эти показания (полученные значения измеряемой величины [JCGM 200, словарная статья 2.10]) всякий раз будут разными. Показания рассматривают как мгновенные реализации соответствующей случайной величины.
3.3 Разброс показаний позволяет судить о качестве проведенного измерения. Их среднее должно обеспечить значение оценки (ИСО 3534-1, словарная статья 1.31) истинного значения величины (JCGM 200, словарная статья 2.11), которая в общем случае будет более достоверной, чем отдельное показание. Разброс показаний и их число дают некоторую информацию в отношении среднего значения как оценки истинного значения величины. Однако эта информация в большинстве случаев не будет достаточной.
3.4 Измерительная система может давать показания, которые рассеяны не вокруг истинного значения величины, а вокруг некоторого другого, смещенного значения. Разницу между смещенным значением и истинным значением величины иногда называют значением систематической погрешности (JCGM 200, словарная статья 2.17). Возьмем для примера домашние весы в ванной. Предположим, что в отсутствие нагрузки они показывают не ноль, а некоторое отличное от нуля значение. Тогда вне зависимости от числа повторных измерений массы встающего на весы человека влияние этого смещения будет неизменно присутствовать в среднем значении показаний. В большинстве случаев систематическая погрешность, рассматриваемая как величина, - это составляющая погрешности, которая остается постоянной или зависит определенным образом от какой-то другой величины.
3.5 Существуют два вида погрешности измерения: систематическая и случайная (JCGM 200, словарная статья 2.19). Систематическая погрешность [значение оценки которой называют смещением при измерении (JCGM 200, словарная статья 2.18)] проявляется в том, что полученное значение измеряемой величины содержит сдвиг. Случайная погрешность проявляется в том, что при повторении измерения полученное значение измеряемой величины в большинстве случаев будет отличаться от предыдущего. Случайность заключается в том, что последующие значения измеряемой величины нельзя точно предсказать по предыдущим (если бы такая возможность существовала, то в результат измерений можно было бы внести соответствующую поправку). В общем случае каждый из видов погрешности может быть обусловлен действием нескольких факторов.
3.6 Для каждого проведенного измерения необходимо решить, как наилучшим образом представить информацию, которую удалось получить об измеряемой величине. Указание значений систематических и случайных погрешностей наряду с наилучшей оценкой измеряемой величины - это тот подход, который часто использовался до разработки GUM. GUM предложил другой подход к пониманию измерения, в частности, к тому, как выражать качество результата измерения. Вместо представления результата измерения в виде наилучшей оценки измеряемой величины вместе с информацией о систематической и случайной погрешностях (в форме "анализа погрешностей") GUM рекомендует выражать результат измерения как наилучшую оценку измеряемой величины вместе с соответствующей неопределенностью измерения.
3.7 Одним из основных исходных положений подхода GUM является утверждение о возможности охарактеризовать качество измерения, исходя из единообразного обращения с систематической и случайной погрешностями, с предложением метода, как это сделать (см. 7.2). Этот метод возвращает к исходной информации, какой она была до применения "анализа погрешностей", и подводит под нее вероятностную основу с помощью концепции неопределенности измерения.
3.8 Другое базовое положение GUM состоит в утверждении, что нельзя установить, насколько хорошо известно единственное истинное значение величины, а можно только сформулировать степень нашей уверенности в том, что оно известно. Таким образом, неопределенность измерения можно представить через степень уверенности. Такая неопределенность будет отражать неполноту знания об измеряемой величине. Понятие "уверенности" очень важно, т.к. оно перемещает метрологию в сферу, где результат измерения должен рассматриваться и численно определяться в терминах вероятностей, которые выражают степень доверия.
3.9 Все сказанное выше касается прямого измерения величины, которое встречается довольно редко. Так, весы в ванной комнате могут преобразовывать измеренное растяжение пружины в оценку измеряемой величины - массы человека на весах. Соотношение между растяжением данной пружины и массой определяют с помощью калибровки (JCGM 200, словарная статья 2.39) весов.
3.10 Соотношение, подобное тому, что описано в 3.9, устанавливает правило преобразования численного значения некоторой величины в соответствующее значение измеряемой величины. Это правило обычно называют моделью измерений (JCGM 200, словарная статья 2.48) или просто моделью. На практике встречаются измерения разных видов, и им соответствуют разные правила преобразования или модели. Даже одному конкретному виду измерений может соответствовать несколько моделей. Так, для бытовых измерений может быть достаточна простая модель (например, в виде прямо пропорциональной зависимости массы на весах от растяжения пружины). Тогда как для научных целей или на производстве для получения более точных результатов могут использоваться более сложные модели взвешивания, учитывающие дополнительные факторы, например выталкивающую силу воздуха. Как правило, определение измеряемой величины зависит от ряда других величин, таких как температура, влажность, смещение объекта, которые также необходимо измерять.
3.11 Если условия измерений несколько отличаются от заданных, то в величины, входящие в модель, должны быть внесены поправки, соответствующие значениям систематической погрешности (JCGM 200, словарная статья 2.17). Если поправку можно оценить, то значение оценки вносят в модель, исправляя значение соответствующей величины [см. JCGM 100 (3.2.4)]. Включение в модель оценки поправки внесет дополнительную неопределенность в результат измерения, даже если значение оценки, как это часто случается на практике, будет равно нулю. Примерами источников систематических погрешностей, возникающих при измерениях высоты, могут быть отклонение средства измерений от вертикали или отличие от установленного значения температуры окружающей среды. Ни угол отклонения средства измерений, ни температуру окружающей среды нельзя узнать точно, но можно получить некоторую информацию о возможных значениях этих величин, например, что угол отклонения от вертикали не может превышать 0,001° или что температура окружающей среды во время измерения отличается от заданной не более чем на 2 °С.
3.12 Величина, входящая в модель измерения, может зависеть от времени, например, если она отражает распад радионуклида с определенной скоростью. В этом случае соответствующая временная зависимость должна быть включена в модель, чтобы дать возможность соотнести измеряемую величину со временем проведения измерения.
3.13 Наряду с данными об измеряемых величинах модель зачастую включает в себя данные другого вида, в частности, представляющие собой некоторые физические константы, каждая из которых известна с какой-то точностью. Примерами таких констант могут служить характеристики определенных материалов, например модуль упругости или удельная теплоемкость. Также в модель в качестве значений оценок величин могут быть включены данные, заимствованные из справочников, сертификатов о калибровке и других аналогичных источников.
3.14 Составляющие модели, необходимые для определения измеряемой величины, называют входными величинами модели измерений (JCGM 200, словарная статья 2.50). Саму модель, определяющую правило преобразования входных величин, часто называют функциональной зависимостью [см. JCGM 100 (4.1)]. Выходной величиной модели измерений (JCGM 200, словарная статья 2.51) является измеряемая величина.
3.15 Формально, связь выходной величины, обозначаемой , в отношении которой требуется получить информацию, с входными величинами, обозначаемыми , ..., информация о которых доступна, часто представляют моделью [см. JCGM 100, (4.1.1)] в виде функции измерения (JCGM 200, словарная статья 2.49)
. (1)
3.16 В общем виде модель измерения (см. JCGM 200, примечание 1 к словарной статье 2.48) может быть представлена формулой
. (2)
Предполагается, что для модели, задаваемой формулой (2), существует способ вычисления по данным , …, и что получаемое при этом значение единственно.
3.17 Истинные значения входных величин , ..., неизвестны. В подходе, принятом GUM, , ..., ассоциируют со случайными величинами (ИСО 3534-1, словарная статья 2.10) с соответствующими распределениями вероятностей [см. JCGM 100 (3.3.5), а также ИСО 3534-1, словарную статью 2.11]. Эти распределения, принимаемые на основе имеющихся знаний об , ..., , описывают вероятности нахождения истинных значений входных величин в разных интервалах. Иногда входные величины (все или некоторые) могут быть связаны между собой, и для их описания используют совместные распределения. В настоящем документе рассматриваются, преимущественно, независимые случайные величины, однако полученные выводы могут быть легко обобщены и на случай взаимосвязанных величин.