Статус документа
Статус документа

ГОСТ Р 54288-2010 Углеводороды нефтяные светлые жидкие. Количественное определение следов серы методом окислительной микрокулонометрии (Переиздание)

     6 Аппаратура

6.1 Можно использовать трубку для пиролиза и печь любой формы, но они должны соответствовать определенным параметрам. На рисунке 1 представлена типичная аппаратура, используемая в настоящее время.



1 - ленточный нагреватель (100°С); 2 - выход; 3 - печь; 4 - центр; 5 - вход; 6 - реагентный газ - кислород; 7 - газ-носитель - аргон

Рисунок 1 - Типичная трубка для пиролиза

6.2 Типичный комплект кулонометрического аппарата и схема потока окислительного газа через него для определения следов серы представлены на рисунке 2.



1 - кислород; 2 - аргон; 3 - мембрана для ввода образца; 4 - вход; 5 - пиролизная печь; 6 - зона пиролиза; 7 - выход; 8 - титрационная ячейка; 9 - микрокулонометр; 10 - потенциометрический самописец

Рисунок 2 - Схема типичного кулонометрического аппарата для определения следов серы

6.3 Печь, обеспечивающая температуру 900°С-1200°С, достаточную для полного термического разложения органической матрицы и полного окисления органически связанной серы до . Наличие независимо регулируемых температурных зон на входе и выходе не является обязательным. Можно использовать электрическую печь.

6.4 Трубка для пиролиза, изготовленная из кварца и сконструированная таким образом, что образец испаряется в нагретой зоне перед печью и переносится инертным газом-носителем в зону окисления, где испарившийся образец смешивается с кислородом и термически разлагается. Входное отверстие должно быть достаточно большим, чтобы лодочка с образцом полностью помещалась в зоне окисления трубки для пиролиза или можно было непосредственно вводить образец в нагреваемую зону перед печью. Трубка для пиролиза должна иметь боковые колена для ввода кислорода и инертного газа-носителя.

6.5 Титровальная ячейка состоит из пары электродов: измерительного электрода и электрода сравнения для определения изменений концентрации иона трииодида; пары генераторных электродов: анодного и катодного электродов для поддержания постоянной концентрации иона трииодида; входного отверстия для газообразного образца из трубки для пиролиза; выходного отверстия для выхода из титровальной ячейки отработавших газов.

Электрод сравнения может быть электродом, изготовленным из двух материалов - Ag/AgCI, или в виде платиновой проволоки в заполненной наполовину ячейке с насыщенным трииодидом.

Измерительный электрод, а также анодный и катодный электроды генератора изготовляют из платины. Ячейка для титрования должна быть такой, чтобы перемешивание можно было выполнить магнитной мешалкой, потоком газа или другими подходящими способами. Можно использовать другие измерительный электрод и электрод сравнения, если они отвечают требованиям настоящего метода испытания.

Примечание - Следует соблюдать аккуратность, чтобы не было чрезмерного перемешивания и чтобы не повредить электроды мешалкой. Достаточно легкого завихрения при перемешивании.

6.6 Микрокулонометр - аппарат с регулировкой процессов затухания и возрастания, должен обеспечивать измерение потенциала пары "измерительный электрод - электрод сравнения" и сравнение этого потенциала с потенциалом смещения. Титрант восстанавливается путем усиления этой разности потенциалов и передачи этой разности к паре генераторных электродов "рабочий электрод - вспомогательный электрод". Микрокулонометр суммирует количество использованного тока, рассчитывает эквивалентную массу титруемой серы и концентрацию серы в образце.

6.7 Ленточный самописец (любой), предназначенный для сбора данных и построения графика зависимости потенциала (mV) от объема вводимого в процессе анализа титранта в ячейку для титрования.

6.8 Контроллеры потока. Аппарат должен быть оборудован контроллерами потока, обеспечивающими постоянную подачу кислорода и инертного газа-носителя.

6.9 Трубка с осушителем. Окисление образца сопровождается образованием водяного пара, который, если допустить его конденсацию между входом и выходом трубки для пиролиза и ячейкой для титрования, будет абсорбировать образовавшийся . В результате получают низкую степень превращения. Для предотвращения этого помещают трубку для дегидратации с фосфорной кислотой между ячейкой для титрования и выходом трубки для пиролиза. Можно применять другие способы, например использовать ленточный нагреватель или трубки, отводящие влагу, если при этом показатели прецизионности соответствуют установленным для данного метода.

6.10 Шприцы для отбора проб. Необходим микрошприц, обеспечивающий точную подачу от 5 до 80 см образца. Вводимый объем не должен превышать 80% вместимости шприца.

6.11 Система ввода образца. Можно использовать любой тип системы ввода образца.

6.11.1 Система ввода лодочки. Вход трубки для пиролиза герметично соединяется (припаивается) с системой ввода лодочки. Система обеспечивает охлажденную зону перед печью для лодочки с образцом до количественного введения образца в лодочку и продувается инертным газом-носителем. Затем механизм, перемещающий лодочку, полностью вводит лодочку в зону окисления печи.

Механизм перемещения должен продвигать и выводить лодочку для образца в зону и из зоны окисления печи с регулируемой и постоянной скоростью (см. примечание к 6.11.2).

6.11.1.1 Охладитель ввода лодочки (любой). Летучесть образца и объем впрыска может потребовать применения устройства, обеспечивающего охлаждение лодочки для образца до введения образца. Настоятельно рекомендуются термоэлектрические охладители или устройства рециркуляции охлажденной жидкости. Охлаждение лодочек с образцом между анализами может оказаться эффективным при условии, что объем образца не слишком большой.

6.11.1.2 Лодочки для образца изготовлены из кварца или из другого подходящего материала, который не будет вступать в реакцию с анализируемым образцом или соединениями серы, и должны выдерживать высокие температуры в условиях настоящего метода испытания.

6.11.2 Система ввода микрошприца должна подавать определенную массу образца из него в нагретую область перед зоной окисления трубки для пиролиза с регулируемой и постоянной скоростью. Там образец испаряется, и поток инертного газа-носителя, продувающий нагреваемую зону, переносит испарившийся образец в зону окисления пиролизной печи. Необходим регулируемый механизм перемещения, обеспечивающий впрыскивание образца из микрошприца при постоянной скорости от 0,5 до 1,0 см/с (см. примечание).

Примечание - Следует соблюдать осторожность, чтобы не вводить образец слишком быстро в зону окисления печи и не ускорить его сжигание в трубке для пиролиза. Программируют систему ввода образца для подачи образца при достаточно контролируемой и определенной скорости, чтобы предотвратить любое неполное сжигание побочных продуктов (кокс или сажа), образующихся на выходе из трубки для пиролиза.