Статус документа
Статус документа

ГОСТ Р ИСО 13373-2-2009 Контроль состояния и диагностика машин. Вибрационный контроль состояния машин. Часть 2. Обработка, анализ и представление результатов измерений вибрации

     4 Обработка и анализ данных

4.1 Общие положения

Обработка данных включает сбор исходных данных, фильтрацию нежелательного шума и других сигналов, не представляющих интерес для последующего анализа, и представление сигналов в форме, требуемой для диагностирования. Поэтому обработка данных является важным этапом в процессе постановки диагноза. Сборщики данных с датчиков вибрации должны обеспечивать достаточное разрешение как по амплитуде, так и по времени. Если собираемые данные представляют в цифровом виде, то разрядность устройства должна быть достаточно высока для обеспечения требуемого разрешения по амплитуде. Устройства высокой разрядности позволяют проводить анализ с более высокой точностью, но имеют большую стоимость и предъявляют более высокие требования к быстродействию.

После того, как данные собраны, следующий этап состоит в их обработке и представлении, в максимальной степени облегчающем пользователю постановку диагноза. Примерами форматов представления данных являются диаграмма Найквиста, диаграмма Боде, диаграмма Кэмпбелла, каскадный спектр. В данном разделе приведены разные методы представления данных, используемые при определении технического состояния машин.

4.2 Анализ во временной области
     


    4.2.1 Временная форма сигналов

Исследование временной формы сигналов ранее являлось основным способом вибрационного анализа. График зависимости мгновенного значения величины, характеризующей вибрацию, от времени или осциллограмму процесса подвергали визуальному анализу с выделением пиков широкополосной вибрации. Простое исследование формы сигнала с применением более современных средств измерений по-прежнему позволяет получить ценную информацию о техническом состоянии машины. Например, задиры на цапфе обнаруживают по сигналам с датчика перемещения, клиппирование (ограничение) сигнала свидетельствует о наличии таких дефектов как износ, ослабление в механических соединениях и т.д.

Хотя характерные особенности временных сигналов служат признаками определенных изменений в техническом состоянии машины, в ряде случаев может потребоваться дополняющий их анализ в частотной области (см. 4.3).

Основой анализа сигналов является то, что любой периодический процесс может быть представлен в виде суммы синусоид с кратными частотами. Некоторые примеры таких сигналов показаны на рисунках 6-9.

На рисунке 6 показан один период гармонического сигнала постоянной амплитуды. Размах величины, характеризующей вибрацию, получают, измеряя удвоенную амплитуду сигнала и умножая на коэффициент преобразования измерительного тракта, определенный при калибровке. Частоту сигнала определяют по числу циклов на определенном интервале времени. Время определяют по временным меткам на осциллографе или по скорости протяжки ленты самописца. В изображенном на рисунке 6 примере одной секунде соответствуют 60 временных отсечек, из которых 12 отсечек приходятся на один период сигнала. Таким образом, период сигнала равен 0,2 с, а его частота равна 5 Гц. Точность определения периода и частоты можно повысить, увеличив длину записи и, соответственно, число рассматриваемых периодов сигнала.


- время, с

     
Рисунок 6 - Временная форма сигнала

         

На рисунке 7 показана суперпозиция двух гармонических сигналов, причем на длине записи помещаются три периода сигнала с более низкой частотой. Эти сигналы можно разделить, если провести две огибающие по вершинам пиков разной полярности. Амплитуда и частота низкочастотной составляющей будут теми же, что и у построенных таким образом огибающих. Расстояние между огибающими в вертикальном направлении равно размаху высокочастотной составляющей, а ее частоту получают подсчетом пиков. В данном примере можно увидеть, что частота высокочастотной составляющей в три раза выше, чем у низкочастотной. Если отношение между частотами велико, то его можно определить визуально по графику сигнала. Во всех других случаях обычно используют Фурье-анализ.


a - один период

     
Рисунок 7 - Суперпозиция сигналов

4.2.2 Биения

Часто сигналы имеют вид, как показано на рисунке 8, где верхняя и нижняя огибающие не совпадают по фазе. При этом совокупность верхней и нижней огибающей образует ясно различимые места пучностей и сужений. Это частный случай суперпозиции двух сигналов, которые близки и по частоте, и по амплитуде. Временные сигналы такого вида называют биениями. На практике примером биений может служить суперпозиция двух лопастных частот сдвоенного корабельного винта. Максимальные значения двух составляющих сигналов попеременно то складываются, то вычитаются. Это определяет местоположение пучностей и сужений. Расстояние между огибающими в пучностях и сужениях равно, соответственно, сумме и разности размахов составляющих сигнала. Другим примером оборудования, создающего вибрацию такого же вида, являются две спаренные машины (например, компрессоры) с приводом от асинхронного электродвигателя.

     
- время, с; - значение сигнала; a - размах в сужении (0,2); - размах в пучности (0,7); - сужение; - пучность; - период вибрации (0,33 с, что соответствует 3 Гц); - период биений (2 с, что соответствует 0,5 Гц)

     
Рисунок 8 - Биения

          

Пример - Если амплитуда большей составляющей - , а меньшей составляющей - , и измерения показали значение сигнала в пучности 0,7, а в сужении - 0,2, то амплитуды составляющих, соответственно, равны 0,45, 0,25. Для получения амплитуд величин, характеризующих вибрацию, эти значения нужно умножить на коэффициент преобразования измерительной цепи. Частота большей составляющей может быть определена подсчетом числа пиков, как указано выше (в примере на рисунке 8 эта частота равна 3 Гц). Данная частота может быть получена умножением частоты биений на число пиков на периоде сигнала (в данном случае на 6). Частоту меньшей составляющей получают умножением частоты биений на целое число, которое либо на единицу больше (в данном случае равно 7), либо на единицу меньше (в данном случае равно 5) числа пиков на периоде. Какой вариант следует выбрать, показывает расположение пиков в месте сужения. В примере на рисунке 8 расстояние между пиками по мере приближения к области сужения уменьшается. Это означает, что большая составляющая имеет более высокую частоту (и, наоборот, если бы большая составляющая имела более низкую частоту, то к области сужения расстояние между пиками сигнала должно было бы возрастать). По рисунку 8 можно определить, что частота биений равна 0,5 Гц. Таким образом, частоту меньшей составляющей получают умножением частоты биений на 5, и она равна 2,5 Гц.