Статус документа
Статус документа


ГОСТ Р ИСО 16063-11-2009

Группа П18

     

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Вибрация

МЕТОДЫ КАЛИБРОВКИ ДАТЧИКОВ ВИБРАЦИИ И УДАРА

Часть 11

Первичная вибрационная калибровка методами лазерной интерферометрии

Vibration. Methods for the calibration of vibration and shock transducers. Part 11. Primary vibration calibration by laser interferometry



ОКС 17.160

Дата введения 2011-01-01

     

Предисловие


Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием Всероссийский научно-исследовательский институт метрологической службы (ФГУП ВНИИМС) на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4, с участием Автономной некоммерческой организации "Научно-исследовательский центр контроля и диагностики технических систем" (АНО "НИЦ КД")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 183 "Вибрация, удар и контроль технического состояния"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 декабря 2009 г. N 870-ст

4 Настоящий стандарт является идентичным по отношению к международному стандарту ИСО 16063-11:1999 "Методы калибровки датчиков вибрации и удара. Часть 11. Первичная вибрационная калибровка методами лазерной интерферометрии" (ISO 16063-11:1999 "Methods for the calibration of vibration and shock transducers - Part 11: Primary vibration calibration by laser interferometry")

5 ВВЕДЕН ВПЕРВЫЕ


Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

     1 Область применения


Настоящий стандарт устанавливает три метода первичной вибрационной калибровки преобразователей прямолинейного ускорения (далее - акселерометров) совместно с усилителями или без них для определения комплексного коэффициента преобразования посредством возбуждения гармонической вибрации и измерения амплитуды колебаний методами лазерной интерферометрии.

Установленные методы применяют в диапазоне частот от 1 Гц до 10 кГц и в диапазоне амплитуд ускорения от 0,1 до 1000 м/с (в зависимости от частоты).

Неопределенность измерений в соответствии с данными методами указана в разделе 2. Метод синус-аппроксимации (метод 3) позволяет проводить калибровку на частотах ниже 1 Гц (например, на частоте 0,4 Гц, используемой в качестве опорной частоты в некоторых стандартах) с амплитудами ускорения менее 0,1 м/с (например, 0,04 м/с на частоте 1 Гц) при наличии соответствующего низкочастотного вибростенда (см. раздел 9).

Метод счета полос (метод 1) применяют для определения модуля коэффициента преобразования в диапазоне частот от 1 до 800 Гц и, в особых случаях, на более высоких частотах (см. раздел 7). Метод точек минимума (метод 2) применяют для определения модуля коэффициента преобразования в диапазоне частот от 800 Гц до 10 кГц (см. раздел 8). Метод синус-аппроксимации может быть применен для определения модуля и фазового сдвига коэффициента преобразования в диапазоне частот от 1 Гц до 10 кГц.

Методы 1 и 3 обеспечивают калибровку при фиксированных значениях амплитуд ускорения на разных частотах. Метод 2 обеспечивает калибровку для фиксированных значений амплитуд перемещений (амплитуда ускорения изменяется в зависимости от частоты).

     2 Неопределенность измерений


Применение методов, установленных настоящим стандартом, должно обеспечивать неопределенность измерений, не превышающую следующие значения:

a) для модуля коэффициента преобразования:

- 0,5% измеряемого значения на опорных частотах и ускорениях (опорных точках);

- не более 1% измеряемого значения вне опорных точек;

b) для фазового сдвига коэффициента преобразования:

- 0,5° в опорных точках;

- не более 1° вне опорных точек.

Рекомендуются следующие опорные точки:

- частота: 160, 80, 40, 16 или 8 Гц (или круговая частота: 1000, 500, 250, 100 или 50 рад/с);

- ускорение (амплитуда или среднеквадратическое значение): 100, 50, 20, 10, 2 или 1 м/с.

Параметры усилителя выбирают так, чтобы минимизировать влияние шума, искажений и спада частотной характеристики на низких и высоких частотах на его функционирование.

Примечание - Неопределенность измерений представляют в виде расширенной неопределенности измерений в соответствии с [2].

     3 Требования к испытательному оборудованию и средствам измерений

3.1 Общие положения

В настоящем разделе приведены требования к аппаратуре, позволяющей проводить калибровку в соответствии с областью применения данного стандарта и обеспечивающей выполнение требований к неопределенности измерений (раздел 2).

При необходимости может быть использовано испытательное оборудование, позволяющее реализовать требования к калибровке лишь в некотором ограниченном диапазоне частот и амплитуд. В этом случае, чтобы охватить диапазоны измерений полностью, используют разные виды испытательного оборудования.

Примечание - Аппаратура, указанная в настоящем разделе, включает в себя оборудование и средства измерений, применяемые для любого из трех методов калибровки настоящего стандарта, с указанием, в каком методе она применяется.

3.2 Генератор частоты с показывающим устройством

Следует использовать генератор частоты, имеющий следующие характеристики:

a) неопределенность измерений частоты не более 0,05% показываемого значения;

b) отклонение частоты в процессе измерений не более ±0,05% показываемого значения;

c) отклонение амплитуды сигнала в процессе измерений не более ±0,05% показываемого значения.

3.3 Вибростенд с усилителем мощности

Следует использовать вибростенд с усилителем мощности, имеющий следующие характеристики:

a) коэффициент гармоник по ускорению не более 2%;

b) малые поперечные и угловые колебания стола вибростенда, чтобы не оказывать существенного влияния на результаты калибровки. При больших амплитудах колебаний, преимущественно в низкочастотном диапазоне от 1 до 10 Гц, колебания в поперечном направлении должны быть не более 1% колебаний в основном направлении; в диапазоне от 10 Гц до 1 кГц - не более 10%; свыше 1 кГц - не более 20%;

c) собственный электронный шум испытательной установки должен быть не менее чем на 70 дБ ниже максимального значения выходного сигнала;

d) отклонение амплитуды ускорения в процессе калибровки не более ±0,05% показываемого значения.

Поверхность стола вибростенда, на которую устанавливают акселерометр, не должна деформировать его основание.

3.4 Сейсмический блок (блоки) вибростенда и лазерного интерферометра

Вибростенд и интерферометр устанавливают на общем или отдельных массивных блоках с целью предотвратить их относительное перемещение из-за колебаний грунта, а также для предотвращения чрезмерного влияния реакции опоры вибростенда на результаты калибровки.

При использовании общего блока его масса должна быть, по меньшей мере, в 2000 раз больше массы подвижной системы вибростенда. При выполнении данного условия реактивная вибрация акселерометра и интерферометра не будут превышать 0,05%. Если масса сейсмического блока меньше, то колебания блока следует учитывать при расчете вибрации.

Для уменьшения искажений вследствие колебаний грунта при измерениях в диапазоне от 10 Гц до 10 кГц сейсмический блок (блоки) устанавливают на демпфированных пружинах, чтобы соответствующая составляющая неопределенности измерений не превышала 0,1%.

3.5 Лазер

Для калибровки используют гелий-неоновый лазер.

В лабораторных условиях (при атмосферном давлении 100 кПа, температуре 23 °С и относительной влажности 50%) номинальная длина волны лазера равна 0,63281 мкм.

Если лазер имеет ручную или автоматическую компенсацию влияния условий окружающей среды, то она должна быть установлена на нуль или отключена.

Допускается использовать одночастотный лазер с другой стабильной и известной длиной волны.

3.6 Интерферометр

Для приема интерференционного сигнала применяют интерферометр Майкельсона совместно с фотодетектором, имеющим частотную характеристику, перекрывающую необходимую ширину полосы частот.

Необходимая ширина полосы частот , Гц, может быть вычислена по амплитуде измеряемой скорости , м/с, по формуле

.


Для метода 1 (см. рисунок 1) и метода 2 (см. рисунок 2) используют простой интерферометр Майкельсона с одним фотодетектором. Для метода 3 (см. рисунок 3) используют модифицированный интерферометр Майкельсона с квадратурными выходными сигналами и с двумя фотодетекторами для приема сигнала интерферометра. Может быть использован интерферометр Майкельсона, модифицированный в соответствии с рисунком 4. Четвертьволновая пластина преобразует падающий линейно поляризованный свет в два измерительных луча со взаимно ортогональной поляризацией и фазовым сдвигом 90°. После интерференции с линейно поляризованным опорным лучом две компоненты со взаимно ортогональными поляризациями пространственно разделяют при помощи соответствующих оптических элементов (например, призмы Волластона или поляризационного светоделителя) и детектируют двумя фотодиодами.

Два выходных сигнала модифицированного интерферометра Майкельсона должны иметь сдвиг нуля не более ±5% амплитуды сигнала, относительную разность амплитуд менее ±5% и отклонение разности фаз от номинального угла 90° не более ±5°. Чтобы удовлетворить этим требованиям, должны быть предусмотрены средства регулировки нуля, амплитуды сигнала и сдвига фаз между двумя сигналами интерферометра.

В случае больших амплитуд перемещений соблюдение указанных допусков может быть затруднено. Чтобы удовлетворить требованиям раздела 2 к неопределенности измерений, требования по допускам должны быть соблюдены, по крайней мере, для амплитуд перемещений до 2 мкм. Для больших амплитуд возможны большие допуски.

Пример - Для амплитуды перемещения 2,5 мм (которой соответствует амплитуда ускорения 0,1 м/с на частоте 1 Гц) допуски могут быть расширены до ±10% для относительной разности амплитуд и до ±20° для отклонения сдвига фаз от номинального угла 90° (см. также примечание 1 к 9.2)

Примечание - Модифицированный интерферометр Майкельсона для методов 1, 2 или 3 может быть заменен другим подходящим двухлучевым интерферометром, например, модифицированным интерферометром Маха-Цандера.

3.7 Аппаратура для счета интерференционных полос (метод 1)

Для счета интерференционных полос должна быть использована аппаратура, имеющая следующие характеристики:

a) диапазон частот от 1 Гц до требуемой максимальной частоты (обычно 20 МГц);

b) максимальная неопределенность измерений 0,01% показываемого значения.

Счетчик импульсов может быть заменен измерителем отношения частот при условии обеспечения требований к неопределенности измерений.

3.8 Перестраиваемый полосовой фильтр или спектроанализатор (метод 2)

Используемая аппаратура должна иметь следующие характеристики:

a) диапазон частот от 800 Гц до 10 кГц;

b) ширина полосы анализа не более 1/6 октавы (12% среднегеометрической частоты);

c) спад частотной характеристики фильтра более 24 дБ на октаву;

d) отношение полезный сигнал/шум более 70 дБ (определяют по максимальному значению полезного сигнала);

e) динамический диапазон более 60 дБ.

3.9 Устройство детектирования нуля (метод 2)

Доступ к полной версии документа ограничен
Полный текст этого документа доступен на портале с 20 до 24 часов по московскому времени 7 дней в неделю.
Также этот документ или информация о нем всегда доступны в профессиональных справочных системах «Техэксперт» и «Кодекс».
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте «Техэксперт: Базовые нормативные документы» бесплатно
Реклама. Рекламодатель: Акционерное общество "Информационная компания "Кодекс". 2VtzqvQZoVs